资源描述
2019-2020年高中数学 1.2.3 充要条件二教案 北师大选修1-1教学过程学生探究过程:1.思考、分析已知p:整数a是2的倍数;q:整数a是偶数.请判断:p是q的充分条件吗?p是q的必要条件吗?分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p易知:pq,故p是q的充分条件;又qp,故p是q的必要条件此时,我们说,p是q的充分必要条件.类比归纳一般地,如果既有pq,又有qp就记作pq.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果pq,那么p与q互为充要条件.3.例题分析例1:下列各题中,哪些p是q的充要条件?() p:b0,q:函数f(x)ax2bxc是偶函数;() p:x0,y0,q:xy0;() p:ab,q:a+cb+c;() p:x5,q:x10() p:ab,q:a2b2分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p解:命题()和()中,pq,且qp,即pq,故p是q的充要条件;命题()中,pq,但qp,故p不是q的充要条件;命题()中,pq,但qp,故p不是q的充要条件;命题()中,pq,且qp,故p不是q的充要条件;类比定义一般地,若pq,但qp,则称p是q的充分但不必要条件;若pq,但qp,则称p是q的必要但不充分条件;若pq,且qp,则称p是q的既不充分也不必要条件在讨论p是q的什么条件时,就是指以下四种之一:若pq,但qp,则p是q的充分但不必要条件;若qp,但pq,则p是q的必要但不充分条件;若pq,且qp,则p是q的充要条件;若pq,且qp,则p是q的既不充分也不必要条件巩固练习:P14 练习第1、2题说明:要求学生回答p是q的充分但不必要条件、或p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件例题分析例2:已知:O的半径为r,圆心O到直线l的距离为d求证:dr是直线l与O相切的充要条件分析:设p:dr,q:直线l与O相切要证p是q的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可证明过程略例3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?教学反思:充要条件的判定方法如果“若p,则q”与“若p则q”都是真命题,那么p就是q的充要条件,否则不是作业:P1:习题1.2A组第1(3)(2),2(3),3题
展开阅读全文