2019-2020年高中数学 2.1.2 椭圆的简单性质二教案 北师大选修1-1.doc

上传人:tian****1990 文档编号:2608661 上传时间:2019-11-28 格式:DOC 页数:3 大小:154.50KB
返回 下载 相关 举报
2019-2020年高中数学 2.1.2 椭圆的简单性质二教案 北师大选修1-1.doc_第1页
第1页 / 共3页
2019-2020年高中数学 2.1.2 椭圆的简单性质二教案 北师大选修1-1.doc_第2页
第2页 / 共3页
2019-2020年高中数学 2.1.2 椭圆的简单性质二教案 北师大选修1-1.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高中数学 2.1.2 椭圆的简单性质二教案 北师大选修1-1教学过程:一、复习引入:1椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2标准方程:, ()3问题:(1)椭圆曲线的几何意义是什么?(2)“范围”是方程中变量的取值范围,是曲线所在的位置的范围,椭圆的标准方程中的取值范围是什么?其图形位置是怎样的?(3)标准形式的方程所表示的椭圆,其对称性是怎样的?(4)椭圆的顶点是怎样的点?椭圆的长轴与短轴是怎样定义的?长轴长、短轴长各是多少?的几何意义各是什么?(5)椭圆的离心率是怎样定义的?用什么来表示?它的范围如何?在这个范围内,它的变化对椭圆有什么影响?(6)画椭圆草图的方法是怎样的? 二、讲解新课: 由椭圆方程() 研究椭圆的性质.(利用方程研究,说明结论与由图形观察一致) (1)范围: 从标准方程得出,即有,,可知椭圆落在组成的矩形中(2)对称性:把方程中的换成方程不变,图象关于轴对称换成方程不变,图象关于轴对称把同时换成方程也不变,图象关于原点对称如果曲线具有关于轴对称,关于轴对称和关于原点对称中的任意两种,则它一定具有第三种对称原点叫椭圆的对称中心,简称中心轴、轴叫椭圆的对称轴从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点在椭圆的方程里,令得,因此椭圆和轴有两个交点,它们是椭圆的顶点令,得,因此椭圆和轴有两个交,它们也是椭圆的顶点 因此椭圆共有四个顶点: ,加两焦点共有六个特殊点. 叫椭圆的长轴,叫椭圆的短轴长分别为分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点.至此我们从椭圆的方程中直接可以看出它的范围, 对称性, 顶点因而只需少量描点就可以较正确的作图了 (4)离心率:发现长轴相等,短轴不同,扁圆程度不同这种扁平性质由什么来决定呢?概念:椭圆焦距与长轴长之比定义式:范围:考察椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例 三、讲解范例:例1 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形解:把已知方程化成标准方程 所以,因此,椭圆的长轴的长和短轴的长分别为,离心率,两个焦点分别为,椭圆的四个顶点是, 将已知方程变形为,根据,在的范围内算出几个点的坐标:01234543.93.73.22.40 先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆:例2 在同一坐标系中画出下列椭圆的简图:(1)(2)答:简图如下:例3 分别在两个坐标系中,画出以下椭圆的简图:(1)(2)答:简图如下: 四、课堂练习:1已知椭圆的一个焦点将长轴分为:两段,求其离心率解:由题意,=:,即,解得 2如图,求椭圆,()内接正方形ABCD的面积 解 由椭圆和正方形的中心对称性知,正方形BFOE的面积是所求正方形面积的1/4,且B点横纵坐标相等,故设B(),代入椭圆方程求得,即正方形ABCD面积为五、小结 :这节课学习了用方程讨论曲线几何性质的思想方法;学习了椭圆的几何性质:对称性、顶点、范围、离心率;学习了椭圆的描点法画图及徒手画椭圆草图的方法 六、课后作业:七、板书设计(略)八、课后记:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!