资源描述
2019-2020年高考数学总复习 第二章 函数概念与基本初等函数 第7讲 函数的图象最新考纲1.理解点的坐标与函数图象的关系;2.会利用平移、对称、伸缩变换,由一个函数图象得到另一个函数的图象;3.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题知 识 梳 理1函数图象的作法(1)描点法作图:通过列表、描点、连线三个步骤,画出函数图象用描点法在选点时往往选取特殊点,有时也可利用函数的性质(如单调性、奇偶性、周期性)画出图象(2)图象变换法作图:一个函数的图象经过适当的变换,得到另一个与之有关的函数图象,在高考中要求学生掌握三种变换(平移变换、伸缩变换、对称变换)2函数图象间的变换(1)平移变换对于平移,往往容易出错,在实际判断中可熟记口诀:左加右减,上加下减(2)对称变换(3)伸缩变换yf(x)yf(ax)yf(x)yAf(x)诊 断 自 测1判断正误(在括号内打“”或“”)精彩PPT展示(1)当x(0,)时,函数y|f(x)|与yf(|x|)的图象相同()(2)函数yf(x)与yf(x)的图象关于原点对称()(3)若函数yf(x)满足f(1x)f(1x),则函数f(x)的图象关于直线x1对称()(4)若函数yf(x)满足f(x1)f(x1),则函数f(x)的图象关于直线x1对称()(5)将函数yf(x)的图象向右平移1个单位得到函数yf(x1)的图象()2(xx浙江卷)在同一直角坐标系中,函数f(x)xa(x0),g(x)logax的图象可能是()解析a0,且a1,f(x)xa在(0,)上单调递增,排除A;当0a1或a1时,B,C中f(x)与g(x)的图象矛盾,故选D.答案D3(xx山东卷)已知函数yloga(xc)(a,c为常数,其中a0,a1)的图象如图,则下列结论成立的是()Aa1,c1Ba1,0c1C0a1,c1D0a1,0c1解析由题图可知,函数在定义域内为减函数,所以0a1.又当x0时,y0,即logac0,所以0c1.答案D4已知函数f(x)的图象与直线yx恰有三个公共点,则实数m的取值范围是()A(,1B1,2)C1,2D2,)解析法一特值法,令m2,排除C、D,令m0,排除A,故选B.法二令x24x2x,解得x1或x2,所以三个解必须为1,2和2,所以有1m0)有两个解,则a的取值范围是_解析画出y|ax|与yxa的图象,如图只需a1.答案(1,)8(xx长沙模拟)已知函数f(x)且关于x的方程f(x)a0有两个实根,则实数a的范围是_解析当x0时,02x1,所以由图象可知要使方程f(x)a0有两个实根,即函数yf(x)与ya的图象有两个交点,所以由图象可知0a1.答案(0,1三、解答题9已知函数f(x).(1)画出f(x)的草图;(2)指出f(x)的单调区间解(1)f(x)1,函数f(x)的图象是由反比例函数y的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示(2)由图象可以看出,函数f(x)的单调递增区间为(,1),(1,)10已知函数f(x)|x24x3|.(1)求函数f(x)的单调区间,并指出其增减性;(2)求集合Mm|使方程f(x)m有四个不相等的实根解f(x)作出函数图象如图(1)函数的增区间为1,2,3,);函数的减区间为(,1,2,3(2)在同一坐标系中作出yf(x)和ym的图象,使两函数图象有四个不同的交点(如图)由图知0m1,Mm|0m1能力提升题组(建议用时:25分钟)11已知函数f(x)则对任意x1,x2R,若0|x1|x2|,下列不等式成立的是()Af(x1)f(x2)0Cf(x1)f(x2)0Df(x1)f(x2)0解析函数f(x)的图象如图所示:且f(x)f(x),从而函数f(x)是偶函数且在0,)上是增函数又0|x1|f(x1),即f(x1)f(x2)0.答案D12函数y的图象与函数y2sin x (2x4)的图象所有交点的横坐标之和等于()A2B4 C6D8解析令1xt,则x1t.由2x4,知21t4,所以3t3.又y2sin x2sin (1t)2sin t.在同一坐标系下作出y和y2sin t的图象由图可知两函数图象在3,3上共有8个交点,且这8个交点两两关于原点对称因此这8个交点的横坐标的和为0,即t1t2t80.也就是1x11x21x80,因此x1x2x88.答案D13已知f(x)是以2为周期的偶函数,当x0,1时,f(x)x,且在1,3内,关于x的方程f(x)kxk1(kR,k1)有四个根,则k的取值范围是_解析由题意作出f(x)在1,3上的示意图如图,记yk(x1)1,函数yk(x1)1的图象过定点A(1,1)记B(2,0),由图象知,方程有四个根,即函数yf(x)与ykxk1的图象有四个交点,故kABk0,kAB,k0.答案14已知函数f(x)的图象与函数h(x)x2的图象关于点A(0,1)对称(1)求f(x)的解析式;(2)若g(x)f(x),且g(x)在区间(0,2上为减函数,求实数a的取值范围解(1)设f(x)图象上任一点P(x,y),则点P关于(0,1)点的对称点P(x,2y)在h(x)的图象上,即2yx2,yf(x)x(x0)(2)g(x)f(x)x,g(x)1.g(x)在(0,2上为减函数,10在(0,2上恒成立,即a1x2在(0,2上恒成立,a14,即a3,故a的取值范围是3,).
展开阅读全文