2019年高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差课时训练 理 新人教A版选修2-3.doc

上传人:tia****nde 文档编号:2594284 上传时间:2019-11-28 格式:DOC 页数:16 大小:266.50KB
返回 下载 相关 举报
2019年高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差课时训练 理 新人教A版选修2-3.doc_第1页
第1页 / 共16页
2019年高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差课时训练 理 新人教A版选修2-3.doc_第2页
第2页 / 共16页
2019年高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差课时训练 理 新人教A版选修2-3.doc_第3页
第3页 / 共16页
点击查看更多>>
资源描述
2019年高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差课时训练 理 新人教A版选修2-31离散型随机变量的均值一般地,若离散型随机变量的分布列为说明:(1)均值刻画的是取值的“中心位置”,这是随机变量的一个重要特征;(2)根据均值的定义,可知随机变量的分布完全确定了它的均值但反过来,两个不同的分布可以有相同的均值这表明分布描述了随机现象的规律,从而也决定了随机变量的均值而均值只是刻画了随机变量取值的“中心位置”这一重要特征,并不能完全决定随机变量的性质2均值的性质若,其中,是常数,是随机变量,则也是随机变量,且_3常用分布的均值(1)两点分布:若随机变量服从参数为的两点分布,则_(2)二项分布:若离散型随机变量,则_(3)二项分布均值公式的直观解释:在一次试验中,试验成功的概率是,则在次独立重复试验中,试验成功的平均次数为注意:两点分布是特殊的二项分布,若一次试验中,试验成功的概率是,则随机变量等于1的概率是,随机变量等于0的概率是4离散型随机变量的方差一般地,若离散型随机变量的分布列为则称_为随机变量的方差,并称其算术平方根为随机变量的标准差说明:(1)描述了1,2,相对于均值的偏离程度,而是上述偏离程度的加权平均,刻画了随机变量与其均值的平均偏离程度随机变量的方差和标准差均反映了随机变量取值偏离于均值的平均程度方差或标准差越小,则随机变量偏离于均值的平均程度越小;(2)标准差与随机变量有相同的单位,而方差的单位是随机变量单位的平方5方差的性质(1)若,其中,是常数,是随机变量,则(2)方差公式的变形:_6常见分布的方差(1)两点分布:若随机变量服从参数为的两点分布,则(2)二项分布:若离散型随机变量,则_参考答案:123456重点离散型随机变量的期望和方差的求解难点离散型随机变量的期望和方差的性质的运用易错混淆常见分布的期望和方差的相关公式导致错误离散型随机变量的均值与方差的求解求离散型随机变量的均值和方差的步骤:(1)理解的意义,写出的所有可能取值;(2)求取每个值时的概率;(3)写出的分布列(有时可以省略);(4)由定义求,根据以往的经验,某工程施工期间的降水量(单位:mm)对工期的影响如下表:降水量工期延误天数历年气象资料表明,该工程施工期间降水量小于300,700,900的概率分别为,求工期延误天数的均值与方差【解析】(1)由已知条件和概率的加法公式有:,所以的分布列为故,某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙若,在第一大块地中,种植品种甲的小块地的数目记为,求的分布列、均值和方差【解析】随机变量的所有可能取值为0,1,2,3,4,所以的分布列为故,离散型随机变量均值与方差的性质(1)口袋中有个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以表示取出球的最小号码,则ABCD(2)已知是离散型随机变量,若,则ABCD或(3)若随机变量,则A2B4C8D9【答案】(1)B;(2)C;(3)B【解析】(1)由题易得,所以,故选B(2)因为是离散型随机变量,且,所以,解得或(舍去),所以故选C(3)因为随机变量,所以,故故选B袋中有20个大小相同的球,其中记上0号的有10个,记上号的有个(1,2,3,4)现从袋中任取一球,用表示所取球的标号(1)求的分布列、均值和方差;(2)若,试求,的值【解析】(1)由题可得的所有可能取值为0,1,2,3,4,所以的分布列为故,(2)因为,所以且,解得或【名师点睛】利用公式,将求,的问题转化为求,的问题,从而可以避免求的分布列的烦琐的计算,解题时可根据两者之间的关系列出等式,进行相关计算即可二项分布的均值与方差根据以往统计资料,某地车主购买甲种保险的概率为,购买乙种保险但不购买甲种保险的概率为,假设各车主购买保险相互独立(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)表示该地的200位车主中,甲、乙两种保险都不购买的车主数,求的均值和方差【解析】设事件表示“该地的1位车主购买甲种保险”,事件表示“该地的1位车主购买乙种保险但不购买甲种保险”,事件表示“该地的1位车主至少购买甲、乙两种保险中的1种”,事件表示“该地的1位车主甲、乙两种保险都不购买”,则,相互独立(1)由题意知,则(2)易得,则,由题意可得,所以,某种有奖销售的饮料,瓶盖内印有“再来壹瓶”或“谢谢惠顾”字样,购买一瓶若其瓶盖内印有“再来壹瓶”字样即为中奖,中奖概率为甲、乙、丙三位同学每人购买了一瓶该饮料(1)求甲中奖且乙、丙都没有中奖的概率;(2)求中奖人数的分布列及数学期望和方差【解析】(1)设甲、乙、丙中奖的事件分别为、,那么,所以甲中奖且乙、丙都没有中奖的概率为(2)由题可得的所有可能取值为0,1,2,3,且0,1,2,3,所以中奖人数的分布列为方法一:由分布列可得,方法二:由题易得,故,【名师点睛】若离散型随机变量服从二项分布,则其均值和方差既可以利用定义求解,也可以代入二项分布的均值和方差的计算公式求解利用均值、方差进行决策某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成万元的损失现有甲、乙两种相互独立的预防措施可供采取,单独采取甲、乙预防措施所需的费用分别为万元和万元,采取相应预防措施后此突发事件不发生的概率分别为和若预防方案允许甲、乙两种预防措施单独采取、联合采取或不采取,请确定预防方案使产生的总费用最少【解析】不采取预防措施时,总费用即损失均值为(万元);若单独采取甲预防措施,则预防措施费用为万元,发生突发事件的概率为,损失均值为(万元),所以总费用为(万元);若单独采取乙预防措施,则预防措施费用为万元,发生突发事件的概率为,损失均值为(万元),所以总费用为(万元);若联合采取甲、乙两种预防措施,发生突发事件的概率为,则预防措施费用为(万元),损失均值为(万元),所以总费用为(万元)综合可知,选择联合采取甲、乙两种预防措施,可使产生的总费用最少有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:甲分数概率乙分数概率试分析甲、乙两名学生谁的成绩好一些【解析】由题易得,因为,所以甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲学生分数较稳定,乙学生分数波动较大,所以甲学生的成绩好一些【名师点睛】均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓但有时两个随机变量即使均值相同,其取值差异也可能很大,此时,我们就要利用方差来反映随机变量取值的集中程度由此来刻画两个随机变量的分布,对实际问题作出决策判断超几何分布的均值与方差一般地,从含有件次品的件产品中,任取件,其中恰有件次品,则服从参数为,的超几何分布,其分布列为,0,1,2,其中,且,求超几何分布的均值与方差有两种方法:(1)列出随机变量的分布列,利用均值与方差的计算公式直接求解;(2)利用公式:,某学校要从5名男生和2名女生中选出2人作为世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则(1)均值_;(2)方差_(结果用最简分数表示)【答案】(1);(2)【解析】方法一:由题意知随机变量服从参数为,的超几何分布,的可能取值为0,1,2,因此,故的分布列为012故,方法二:由题意知随机变量服从参数为,的超几何分布,直接代入超几何分布均值和方差的计算公式可得,【名师点睛】超几何分布均值公式的直观解释:件产品中有件次品,从中任取1件产品,易知平均取到件次品;若从中任取件产品,则平均取到件次品1下面说法中正确的是A离散型随机变量的均值反映了取值的概率的平均值B离散型随机变量的方差反映了取值的平均水平C离散型随机变量的均值反映了取值的平均水平D离散型随机变量的方差反映了取值的概率的平均值2已知,则的值为A10B7C3D63已知,则,的值分别为A,B,C,D,4随机变量的所有可能取值为0,1,2,若,则方差ABCD5现有10件产品,其中3件是次品,任取2件,若表示取到次品的个数,则_6设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回的抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,表示三次中红球被摸中的次数(每个小球被抽取的概率相同,每次抽取相互独立),则方差_7若随机变量服从二项分布,且,则_8假定1500件产品中有100件不合格品,若从中抽取15件进行检查,则15件产品中不合格品数的均值_9某企业完成一项工程有三个方案,甲、乙、丙每个方案的获利情况如下表所示:自然状况方案甲方案乙方案丙概率获利(万元)概率获利(万元)概率获利(万元)巨大成功中等成功不成功为使企业获利最大,该企业应选择哪种方案?10某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年户居民每户的月均用电量(单位:度),将数据按照,分成9组,制成了如下图所示的频率分布直方图(1)求频率分布直方图中的值并估计居民月均用电量的中位数;(2)从样本中月均用电量不低于700度的用户中随机抽取4户,用表示月均用电量不低于800度的用户数,求随机变量的分布列及数学期望11袋中有20个大小相同的球,其中记上0号的有5个,记上号的有个(1,2,3,4,5),现从袋中任取一球,用表示所取球的标号(1)求的分布列、均值和方差;(2)若,试求,的值12已知某离散型随机变量服从的分布列如下表,则随机变量的方差等于ABCD13甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数的期望ABCD14设随机变量的分布列为,0,1,2,且,则 _15已知是离散型随机变量,若,则_16已知集合,则满足条件的事件的概率为_;集合的元素中含奇数的个数的期望为_17甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;(2)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望18某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为(1)问该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于?(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,能使该厂产生5万元的利润,否则将不产生利润若该厂现有2名工人,求该厂每月获利的均值19【xx四川理】同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是_20【xx山东理】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和的分布列和数学期望1C【解析】离散型随机变量的均值反映了取值的平均水平,它的方差反映了的取值的离散程度故选C2A【解析】由题意得,解得故选A3C【解析】由题意可得,解得,故选C4B【解析】设,所以,解得,所以,故选B5【解析】由题意得,随机变量的可能取值为0,1,2,所以(或)6【解析】每次取球时,取到红球的概率为、黑球的概率为,所以服从二项分布,即,所以7【解析】因为随机变量服从二项分布,所以,则,解得8【解析】易知服从超几何分布,故9方案甲的平均获利最大,应选择方案甲【解析】用,分别表示甲、乙、丙三个方案的获利金额,则采用方案甲的平均获利为万元;采用方案乙的平均获利为万元;采用方案丙的平均获利为万元,显然,即,所以方案甲的平均获利最大,应选择方案甲10(1),中位数为度,(2)分布列见解析,【解析】(1),解得设中位数是度,前5组的频率之和为,而前4组的频率之和为,所以,解得,故居民月均用电量的中位数为度(2)200户居民月均用电量在度的户数是8,月均用电量在度的户数是4故随机变量的可能取值为0,1,2,3,4,所以随机变量的分布列为01234故11(1)分布列见解析,;(2),或,【解析】(1)的可能取值为0,1,2,3,4,5,且,所以的分布列为012345故,(2)由,可得,解得,又,所以当时,解得;当时,解得综上,或,12B【解析】由可得,所以,=,故选B(或)13B【解析】依题意知,的所有可能取值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响,从而有,故故选B14【解析】易知,所以,解得,所以15【解析】由,可得,求解可得16【解析】由题意,无满足条件的事件,故所求概率为;集合的元素中含奇数个数的可能情况为,对应概率分别为,故数学期望为17(1)甲,理由见解析;(2)分布列见解析,【解析】(1)甲参加比较合适理由如下:,因为,所以甲的成绩比较稳定,派甲参加比较合适(2)“甲同学在一次数学竞赛中成绩高于80分”为事件,则,随机变量的可能取值为0,1,2,3,且,所以,故的分布列为0123所以(或)18(1);(2)万元【解析】(1)设“机器出现故障设”为事件,则设出现故障的机器台数为,则,故的分布列为01234设该厂有名工人,则“每台机器在任何时刻同时出现故障时能及时进行维修”为,这个互斥事件的和事件,则01234因为,所以至少要3名工人,才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于(2)设该厂获利为万元,则的所有可能取值为18,13,8,故的分布列为18138所以,故该厂获利的均值为万元19【解析】同时抛掷两枚质地均匀的硬币,可能的结果有(正正),(正反),(反正),(反反),所以在1次试验中成功的概率为,所以,故20(1);(2)分布列见解析,【解析】(1)记事件:“甲第一轮猜对”,记事件:“乙第一轮猜对”,记事件:“甲第二轮猜对”,记事件:“乙第二轮猜对”,记事件:“星队至少猜对3个成语”由题意,由事件的独立性与互斥性,可得,所以“星队”至少猜对3个成语的概率为(2)由题意,随机变量的所有可能取值为0,1,2,3,4,6由事件的独立性与互斥性,得,所以随机变量的分布列为012346所以数学期望
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!