2019-2020年高一数学 指数函数的性质应用 第七课时 第二章.doc

上传人:tian****1990 文档编号:2590475 上传时间:2019-11-28 格式:DOC 页数:4 大小:30.50KB
返回 下载 相关 举报
2019-2020年高一数学 指数函数的性质应用 第七课时 第二章.doc_第1页
第1页 / 共4页
2019-2020年高一数学 指数函数的性质应用 第七课时 第二章.doc_第2页
第2页 / 共4页
2019-2020年高一数学 指数函数的性质应用 第七课时 第二章.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
2019-2020年高一数学 指数函数的性质应用 第七课时 第二章课 题2.6.3 指数函数的性质应用(二)教学目标(一)教学知识点1.指数形式的复合函数.2.指数形式复合函数的单调性.3.指数形式复合函数的奇偶性.(二)能力训练要求1.掌握指数形式的复合函数的单调性的证明方法.2.掌握指数形式的复合函数的奇偶性的证明方法.3.培养学生的数学应用意识.(三)德育渗透目标1.认识从特殊到一般的研究方法.2.用联系的观点看问题.3.了解数学在生产实际中的应用.教学重点1.函数单调性的证明通法.2.函数奇偶性的证明通法.教学难点指数函数的性质应用.教学方法启发式启发学生运用证明函数单调性的基本步骤对指数形式的复合函数的单调性进行证明,但应在变形这一关键步骤帮助学生总结、归纳有关指数形式的函数变形技巧,以利于下一步的判断.在运用证明函数奇偶性的基本步骤对指数形式的复合函数的奇偶性证明时,应提醒学生考查函数的定义域是否关于原点对称,以培养学生的定义域意识,并引导学生得指数形式的复合函数判断奇偶性的常用等价形式,以帮助学生形成系统的知识结构.教具准备幻灯片三张第一张:判断及证明函数单调性的基本步骤、判断及证明函数奇偶性的基本步骤(记作2.6.3 A)第二张:例5证明过程(记作2.6.3 B)第三张:例6证明过程(记作2.6.3 C)教学过程.复习回顾师上一节,我们一起学习了指数函数的性质应用,这一节,我们学习指数形式的复合函数的单调性、奇偶性的证明方法.首先,大家来回顾一下第二章第一单元所学的证明函数单调性、奇偶性的基本步骤.生判断及证明函数单调性的基本步骤:假设作差变形判断.生判断及证明函数奇偶性的基本步骤:(1)考查函数定义域是否关于原点对称;(2)比较f(x)与f(x)或者f(x)的关系;(3)根据函数奇偶性定义得出结论.(给出幻灯片2.6.3 A,老师结合幻灯片内容加以强调说明)师在函数单调性的证明过程中,“变形”是一关键步骤,变形的目的是为了易于判断,判断有两层含义:一是对差式正负的判断;二是对增减函数定义的判断.另外,在函数奇偶性的判断及证明过程中,定义域的考查容易被大家忽略,而函数的定义域关于原点对称是函数具有奇偶性的必要条件,大家应予以重视.下面,我们通过例题来一起熟悉并掌握证明函数单调性,奇偶性的方法.讲授新课例5当a1时,证明函数f(x)=是奇函数.分析:此题证明的结构仍是函数奇偶性的证明,但在证明过程中的恒等变形用到推广的实数范围内的指数幂运算性质.同时,应注意首先考查函数的定义域.证明:由ax10 得x0故函数定义域xx0关于原点对称.又f(x)=f(x)=f(x)=f(x)所以函数f(x)=是奇函数.师对于f(x)与f(x)关系的判断,也可采用如下证法:1即f(x)f(x)评述:对于指数形式的复合函数的奇偶性的证明,常利用如下的变形等价形式:f(x)f(x)1(f(x)0),f(x)f(x)1(f(x)0).这种变形的等价形式主要是便于实数指数幂运算性质,要求学生在解决相关类型题时,予以尝试和体会.例6设a是实数,f(x)=a (xR)(1)试证明对于任意a,f(x)为增函数;(2)试确定a值,使f(x)为奇函数.分析:此题的形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明.还应要求学生注意不同题型的解答方法.(1)证明:设x1,x2R,且x1x2则f(x1)f(x2)=(a=由于指数函数y=2x在R上是增函数,且x1x2,所以即0又由2x0得+10,+10所以f(x1)f(x2)0即f(x1)f(x2)因为此结论与a取值无关,所以对于a取任意实数,f(x)为增函数.评述:上述证明过程中,对差式正负判断时,利用了指数函数的值域及单调性.(2)解:若f(x)为奇函数,则f(x)=f(x)即a变形得:2a=解得a=1所以当a=1时,f(x)为奇函数.评述:此题并非直接确定a值,而是由已知条件逐步推导a值.应要求学生适应这种探索性题型.课堂练习已知函数f(x)为偶函数,当x(0,+)时,f(x)=2x+1,求当x(,0)时,f(x)的解析式.解:设x(,0),则x(0,),由x(0,)时,f(x)2x1得f(x)2-x1又由函数f(x)为偶函数得f(x)f(x)f(x)2-x1.即当x(,0)时,f(x)2-x1.课时小结师通过本节学习,要求大家进一步熟悉指数函数的性质应用,并掌握函数单调性.奇偶性证明的通法.课后作业(一)1.课本P75习题2.64.求证:(1)f(x)(a0,a1)是奇函数;(2)f(x)(a0,a1)是偶函数.证明:(1)f(x)f(x)即f(x)f(x),故f(x)是奇函数.(2)f(x)f(x)即f(x)f(x),故f(x)是偶函数.2.已知函数f(x)=,(1)判断函数f(x)的奇偶性;(2)求证函数f(x)在(,+)上是增函数.(1)解:首先考查函数定义域R,故定义域关于原点对称.又f(x)f(x)即f(x)f(x)f(x)是奇函数.(2)证明:设x1x2,则f(x1)f(x2)x1x2 0.又210,100f(x1)f(x2)0即f(x1)f(x2)f(x)在(,)上是增函数.(二)1.预习内容:课本P762.预习提纲:(1)对数与指数有何联系?(2)对数式与指数式如何互化?板书设计2.6.3 指数函数的性质应用(二)1.单调性证明通法:比较自变量大小与相应函数值大小是具有一致性,还是相反性.2.奇偶性证明通法考查定义域比较f(x),f(x),f(x)三者的关系3.例54.例65.学生练习
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!