2019-2020年高中数学《1.1.3 正弦定理和余弦定理》教案 新人教A版必修5.doc

上传人:tian****1990 文档编号:2589321 上传时间:2019-11-28 格式:DOC 页数:2 大小:33.50KB
返回 下载 相关 举报
2019-2020年高中数学《1.1.3 正弦定理和余弦定理》教案 新人教A版必修5.doc_第1页
第1页 / 共2页
2019-2020年高中数学《1.1.3 正弦定理和余弦定理》教案 新人教A版必修5.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高中数学1.1.3 正弦定理和余弦定理教案 新人教A版必修5高二数学 教学案主备人:执教者:【学习目标】 1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。 2.通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。【学习重点】在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。【学习难点】正、余弦定理与三角形的有关性质的综合运用【授课类型】新授课【教 具】课件、电子白板【学习方法】 【学习过程】1、 引入: 思考:在ABC中,已知,解三角形。 (由学生阅读课本第9页解答过程) 从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。二、特例示范: 例1在ABC中,已知,讨论三角形解的情况分析:先由可进一步求出B;则从而1当A为钝角或直角时,必须才能有且只有一解;否则无解。2当A为锐角时,如果,那么只有一解;如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解。(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且时,有两解;其它情况时则只有一解或无解。例2在ABC中,已知,判断ABC的类型。分析:由余弦定理可知(注意:)解:,即,。例3在ABC中,面积为,求的值分析:可利用三角形面积定理以及正弦定理解:由得,则=3,即,从而 4、 当堂练习:(1)在ABC中,已知,试判断此三角形的解的情况。(2)在ABC中,若,则符合题意的b的值有_个。(3)在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围。(答案:(1)有两解;(2)0;(3)(1)在ABC中,已知,判断ABC的类型。 (2)已知ABC满足条件,判断ABC的类型。 (答案:(1);(2)ABC是等腰或直角三角形)(1)在ABC中,若,且此三角形的面积,求角C(2)在ABC中,其三边分别为a、b、c,且三角形的面积,求角C(答案:(1)或;(2)5、 本节小结:(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;(3)三角形面积定理的应用六、作业布置:学案1.1.3个性设计
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!