2019-2020年高中数学第1章统计5用样本估计总体教学案北师大版必修3.doc

上传人:tia****nde 文档编号:2576809 上传时间:2019-11-28 格式:DOC 页数:12 大小:357.50KB
返回 下载 相关 举报
2019-2020年高中数学第1章统计5用样本估计总体教学案北师大版必修3.doc_第1页
第1页 / 共12页
2019-2020年高中数学第1章统计5用样本估计总体教学案北师大版必修3.doc_第2页
第2页 / 共12页
2019-2020年高中数学第1章统计5用样本估计总体教学案北师大版必修3.doc_第3页
第3页 / 共12页
点击查看更多>>
资源描述
2019-2020年高中数学第1章统计5用样本估计总体教学案北师大版必修31众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数(3)平均数:平均数的定义:如果有n个数x1、x2、xn,那么,叫作这n个数的平均数平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数样本平均数:样本中所有个体的平均数叫样本平均数2标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示s.(2)方差的求法:标准差的平方s2叫作方差s2(x1)2(x2)2(xn)2其中,xn是样本数据,n是样本容量,是样本均值(3)方差的简化计算公式:s2(xxx)n2(xxx)2.3极差一组数据的最大值与最小值的差称为这组数据的极差4数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度问题思考1一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个2如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值讲一讲1.据报道,某公司的33名职工的月工资(单位:元)如下:职务董事长副董事长董事总经理经理管理员职员人数11215320工资5 5005 0003 5003 0002 5002 0001 500(1)求该公司职工月工资的平均数、中位数、众数(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法尝试解答(1)平均数是1 5001 5005912 091(元)中位数是1 500元,众数是1 500元(2)新的平均数是15001 5001 7883 288(元)中位数是1 500元,众数是1 500元(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平1众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量2众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题3中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势练一练1某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:销售量(件)1 800510250210150120人数113532(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额解:(1)平均数为(1 800151012503210515031202)320(件),中位数为210件,众数为210件(2) 不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额.讲一讲2.甲、乙两机床同时加工直径为100 cm的零件,为了检验质量,各从中抽取6件进行测量,分别记录数据为:甲:9910098100100103乙:9910010299100100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定尝试解答(1)甲(9910098100100103)100,乙(9910010299100100)100,s(99100)2(100100)2(98100)2(100100)2(100100)2(103100)2,s(99100)2(100100)2(102100)2(99100)2(100100)2(100100)21.(2)两台机床所加工零件的直径的平均数相同,又ss,所以乙机床加工零件的质量更稳定在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性就越差;方差越小,数据越集中,质量越稳定练一练2对划艇运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲:273830373531乙:332938342836根据以上数据,试估计两人最大速度的平均数和标准差,并判断他们谁更优秀解:甲(273830373531)33,s(2733)2(3833)2(3033)2(3733)2(3533)2(3133)2,s甲3.96,乙(332938342836)33,s(3333)2(2933)2(3833)2(3433)2(2833)2(3633)2,s乙3.56.由上知,甲、乙两人最大速度的平均数均为33 m/s,甲的标准差为3.96 m/s,乙的标准差为3.56 m/s,说明甲、乙两人的最大速度的平均值相同,但乙的成绩比甲的成绩更稳定,故乙比甲更优秀讲一讲3.在一次科技知识竞赛中,两组学生的成绩如下表:分数5060708090100人数甲组251013146乙组441621212已经算得两个组的平均分都是80分请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由尝试解答(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些(2)甲(5026057010801390141006)4 00080(分),乙(5046047016802901210012)4 00080(分)s2(5080)25(6080)210(7080)213(8080)214(9080)26(10080)2172,s4(5080)24(6080)216(7080)22(8080)212(9080)212(10080)2256.ss,甲组成绩较乙组成绩稳定,故甲组好些(3)甲、乙两组成绩的中位数、平均数都是80分其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人从这一角度看,甲组的成绩较好(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,乙组成绩集中在高分段的人数多同时,乙组得满分的人数比甲组得满分的人数多6人从这一角度看,乙组的成绩较好要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本讲的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论练一练3甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:(1)请填写下表:平均数中位数命中9环以上的次数(含9环)甲7乙(2)从下列三个不同角度对这次测试结果进行分析:从平均数和中位数相结合看,谁的成绩好些?从平均数和命中9环及9环以上的次数相结合看,谁的成绩好些?从折线图中两人射击命中环数的走势看,谁更有潜力?解:(1)由图可知,甲打靶的成绩为:2,4,6,8,7,7,8,9,9,10;乙打靶的成绩为:9,5,7,8,7,6,8,6,7,7.甲的平均数是7,中位数是7.5,命中9环及9环以上的次数是3;乙的平均数是7,中位数是7,命中9环及9环以上的次数是1.(2)由(1)知,甲、乙的平均数相同甲、乙的平均数相同,甲的中位数比乙的中位数大,所以甲成绩较好甲、乙的平均数相同,甲命中9环及9环以上的次数比乙多,所以甲成绩较好从折线图中看,在后半部分,甲呈上升趋势,而乙呈下降趋势,故甲更有潜力【解题高手】【多解题】一个球队所有队员的身高如下(单位:cm):178, 179, 181, 182, 176, 183, 176, 180, 183, 175, 181, 185, 180, 184,问这个球队的队员平均身高是多少?(精确到1 cm)解法一:利用平均数的公式计算(178179181180184)2 523180.法二:建立新数据,再利用平均数简化公式计算取a180,将上面各数据同时减去180,得到一组数据:2,1,1,2,4,3,4,0,3,5,1,5,0,4.(21124340351504)30.2,a0.2180180.法三:利用加权平均数公式计算(1851184118321821181218021791178117621751)2 523180.法四:建立新数据(方法同法二),再利用加权平均数公式计算514132211202(1)1(2)1(4)2(5)130.2.a0.2180180.1已知一组数据为20,30,40,50,50,60,70,80,其中平均数,中位数和众数大小关系是()A平均数中位数众数B平均数中位数众数C中位数众数平均数D众数中位数平均数解析:选D 可得出这组数据的平均数、中位数和众数均为50.2样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为()A.B. C. D2解析:选D 样本的平均数为1,即(a0123)1,a1,样本方差s2(11)2(01)2(11)2(21)2(31)22.3. 若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()89 793 1 6 4 0 2A91.5和91.5 B91.5和92 C91和91.5 D92和92解析:选A 将这组数据从小到大排列,得87,89,90,91,92,93,94,96.故平均数91.5,中位数为91.5.4(湖南高考)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_(注:方差s2(x1)2(x2)2(xn)2,其中为x1,x2,xn的平均数)解析:该运动员五场比赛中的得分为8,9,10,13,15,平均得分11,方差s2(811)2(911)2(1011)2(1311)2(1511)26.8.答案:6.85甲、乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下:甲68998乙107779则两人射击成绩的稳定程度是_解析:甲8,乙8,s1.2,s1.6,sB,sAsB B.AsB C.AB,sAsB D.AB,sAsB解析:选B A中的数据都不大于B中的数据,所以AsB.4为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为me,众数为m0,平均数为,则()Amem0 Bmem0 Cmem0 Dm0me解析:选D 易知中位数的值me5.5,众数m05,平均数(324351066738292102)6,所以m0me.5一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A57.23.6 B57.256.4 C62.863.6 D62.83.6解析:选D 设该组数据为x1,x2,xn,则(x1x2xn)2.8,(x12.8)2(x22.8)2(xn2.8)23.6,所以,所得新数据的平均数为(x160)(x260)(xn60)(x1x2xn)602.86062.8.所得新数据的方差为(x16062.8)2(x26062.8)2(xn6062.8)2(x12.8)2(x22.8)2(xn2.8)23.6.二、填空题6一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x_.解析:由中位数的定义知16,x15.答案:157某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为s2_.解析:计算可得两组数据的平均数均为7,甲班的方差s;乙班的方差s.则两组数据的方差中较小的一个为s.答案:8(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4则(1)平均命中环数为_;(2)命中环数的标准差为_解析:(1)由公式知,平均数为(78795491074)7;(2)由公式知,s2(0104494909)4s2.答案:(1)7(2)2三、解答题9为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:每户丢弃旧塑料袋个数2345户数6161513(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差解:(1)平均数(26316415513)3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s26(23.7)216(33.7)215(43.7)213(53.7)248.50.97,所以标准差s0.985.10某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:班级平均分众数中位数标准差甲班79708719.8乙班7970795.2(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!