2019-2020年高一数学已知三角函数值求角一 人教版2.doc

上传人:tian****1990 文档编号:2576414 上传时间:2019-11-28 格式:DOC 页数:2 大小:44.50KB
返回 下载 相关 举报
2019-2020年高一数学已知三角函数值求角一 人教版2.doc_第1页
第1页 / 共2页
2019-2020年高一数学已知三角函数值求角一 人教版2.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高一数学已知三角函数值求角一 人教版2一课题:已知三角函数值求角(1)二教学目标:1理解反正弦、反余弦的意义,并会用符号表示;2会由已知角的正弦值、余弦值求出给定范围内的角,并能用反正弦、反余弦表示。三教学重、难点:1已知角的正弦值、余弦值求出给定范围内的角;2理解反正弦、反余弦的意义,并能用反正弦、反余弦表示角。四教学过程:(一)复习:投影正弦函数、余弦函数的图象1写出正弦函数、余弦函数的单调区间;2在区间上,满足条件的有几个? 答:有且只有一个在区间上,满足条件的有几个? 答:当或时,有且只有一个;当且时有两个;当时有三个。3在区间上,满足条件的有几个? 答:有且只有一个在区间上,满足条件的有几个?答:当时,有且只有一个;当时有两个;(二)新课讲解:例1(1)已知,且,求; (2)已知,且,求的取值集合。解:(1)由在时递增,且,得; (2)因为,且,所以, 当时,递增且,所以, 又,也适合题意, 所以,的取值集合为例2(1)已知,且,求(用弧度表示); (2)已知,且,求的取值集合。解:(1),利用计算器得:,所以,;(2)由正弦函数的单调性和 , , 可知角,角的正弦值也是, 所以,的取值集合为,即提问:如果本题不允许用计算器,所求的怎么表示?下面引入一个新的概念。1反正弦的概念根据正弦函数的性质,为了使符合条件的角有且只有一个,我们选择闭区间作为基本的范围。在这个闭区间上,符合条件的角叫做实数的反正弦,记作,即,其中,且说明:当时,表示内的一个角,其正弦值等于,故例如:,这样,例2(1)的结果可表示成,或; (2)的结果可表示成,或【练习】P76练习3(3)(1)例3(1)已知,且,求; (2)已知,且,求的取值集合。解:(1)由余弦函数在闭区间上是减函数和, 可知符合条件的角有且只有一个,这个角为钝角。由,利用计算器得:,所以。(2)因为,且,所以, 由及余弦函数的单调性得或,所以,所求的的集合为【提问】如果本题不允许用计算器,所求的怎么表示?下面引入一个新的概念。2反余弦的概念 根据余弦函数的性质,为了使符合条件的角有且只有一个,我们选择闭区间作为基本的范围。在这个闭区间上,符合条件的角叫做实数的反余弦,记作,即,其中,且说明:当时,表示内的一个角,其余弦值等于,故例如:,五练习:P76练习2(1)(2)(4)(5)六小结:1已知角的正弦值、余弦值求出给定范围内的角,并能用反正弦、反余弦表示;2已知角的正弦值、余弦值求给定范围内的角的基本步骤: 第一步:确定角的范围; 第二步:如果函数值是正数,则先求出对应的锐角;如果函数值是负数,则先求出与其绝对值对应的锐角; 第三步:根据角的范围,利用诱导公式得到所求的角 七作业:习题4.11 第1(1)(2),2(1)(2),3(1)(2)(3)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!