资源描述
2019-2020年高中数学 数学归纳法(2)教案 苏教版选修2-2一、教学目标:1了解数学归纳法的原理,理解数学归纳法的一般步骤。2掌握数学归纳法证明问题的方法,能用数学归纳法证明一些简单的数学命题3能通过“归纳-猜想-证明”处理问题。二、教学重点:能用数学归纳法证明一些简单的数学命题。难点:归纳猜想证明。三、教学过程:【创设情境】问题1:数学归纳法的基本思想? 以数学归纳法原理为依据的演绎推理,它将一个无穷归纳(完全归纳)的过程,转化为一个有限步骤的演绎过程。(递推关系)问题2:数学归纳法证明命题的步骤?(1)递推奠基:当n取第一个值n0结论正确;(2)递推归纳:假设当n=k(kN*,且kn0)时结论正确;(归纳假设)证明当n=k+1时结论也正确。(归纳证明)由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 数学归纳法是直接证明的一种重要方法,应用十分广泛,主要体现在与正整数有关的恒等式、不等式;数的整除性、几何问题;探求数列的通项及前n项和等问题。【探索研究】问题:用数学归纳法证明:能被9整除。法一:配凑递推假设:法二:计算f(k+1)-f(k),避免配凑。说明:归纳证明时,利用归纳假设创造条件,是解题的关键。 注意从“n=k到n=k+1”时项的变化。【例题评析】例1:求证: 能被整除(nN+)。例2:数列an中,,a1=1且(1)求的值;(2)猜想an的通项公式,并证明你的猜想。说明:用数学归纳法证明问题的常用方法:归纳猜想证明变题:(xx全国理科)设数列an满足,nN+, (1)当a1=2时,求,并猜想an的一个通项公式; (2)当a13时,证明对所有的n1,有 ann+2 例3:平面内有n条直线,其中任何两条不平行,任何三条直线不共点,问:这n条直线将平面分成多少部分?变题:平面内有n个圆,其中每两个圆都相交与两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2+n+2个部分。例4:设函数f(x)是满足不等式,(kN+)的自然数x的个数;()求f(x)的解析式;()记Sn=f(1)+f(2)+f(n),求Sn的解析式;()令n=n2+n-1 (nN+),试比较n与n的大小。【课堂小结】1.猜归法是发现与论证的完美结合数学归纳法证明正整数问题的一般方法:归纳猜想证明。2.两个注意: (1)是否用了归纳假设? (2)从n=k到n=k+1时关注项的变化?【反馈练习】1 观察下列式子 则可归纳出_ (nN*)1用数学归纳法证明 2已知数列计算根据计算结果,猜想的表达式,并用数学归纳法证明。3.是否存在常数a、b、c,使等式对一切都成立?并证明你的结论.【课外作业】 课标检测
展开阅读全文