2019-2020年高中数学 2.5《等比数列的前n项和》教案(1课时) 新人教A版必修5.doc

上传人:tian****1990 文档编号:2565827 上传时间:2019-11-27 格式:DOC 页数:2 大小:38KB
返回 下载 相关 举报
2019-2020年高中数学 2.5《等比数列的前n项和》教案(1课时) 新人教A版必修5.doc_第1页
第1页 / 共2页
2019-2020年高中数学 2.5《等比数列的前n项和》教案(1课时) 新人教A版必修5.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高中数学 2.5等比数列的前n项和教案(1课时) 新人教A版必修5三维目标知识与技能:掌握等比数列的前n项和公式及公式证明思路;会用等比数列的前n项和公式解决有关等比数列的一些简单问题。过程与方法:经历等比数列前n 项和的推导与灵活应用,总结数列的求和方法,并能在具体的问题情境中发现等比关系建立数学模型、解决求和问题。情感态度与价值观:在应用数列知识解决问题的过程中,要勇于探索,积极进取,激发学习数学的热情和刻苦求是的精神。教学重点等比数列的前n项和公式推导教学难点灵活应用公式解决有关问题教学过程.课题导入创设情境提出问题课本P62“国王对国际象棋的发明者的奖励”.讲授新课分析问题如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。1、 等比数列的前n项和公式: 当时, 或 当q=1时,当已知, q, n 时用公式;当已知, q, 时,用公式.公式的推导方法一:一般地,设等比数列它的前n项和是由得 当时, 或 当q=1时,公式的推导方法二:有等比数列的定义,根据等比的性质,有即 (结论同上)围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式公式的推导方法三: (结论同上)解决问题有了等比数列的前n项和公式,就可以解决刚才的问题。由可得=。这个数很大,超过了。国王不能实现他的诺言。例题讲解课本P65-66的例1、例2 例3解略.课堂练习课本P66的练习1、2、3.课时小结等比数列求和公式:当q=1时, 当时, 或.课后作业板书设计
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!