资源描述
第四章 三角函数、解三角形,4.6 简单的三角恒等变换,内容索引,基础知识 自主学习,题型分类 深度剖析,思想与方法系列,思想方法 感悟提高,练出高分,基础知识 自主学习,1.公式的常见变形,知识梳理,1,答案,判断下面结论是否正确(请在括号中打“”或“”) (1)y3sin x4cos x的最大值是7.( ),(3)在非直角三角形中有:tan Atan Btan Ctan Atan Btan C.( ),思考辨析,答案,考点自测,2,解析答案,1,2,3,4,5,解析答案,1,2,3,4,5,解析答案,1,2,3,4,5,8,解析答案,1,2,3,4,5,解析答案,1,2,3,4,5,返回,题型分类 深度剖析,题型一 三角函数式的化简与求值,解析答案,解析答案,思维升华,思维升华,答案 4,思维升华,(1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.,跟踪训练1,解析答案,解析答案,故cos()cos cos sin sin ,题型二 三角函数的求角问题,解析答案,解析答案,思维升华,解析答案,思维升华,即0,结合tan()1,,思维升华,思维升华,通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.,跟踪训练2,解析答案,解析答案,解析答案,题型三 三角恒等变换的应用,解析答案,解析答案,思维升华,思维升华,三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为yAsin(x)k的形式再研究性质,解题时注意观察角、函数名、结构等特征.,(1)(2014课标全国)函数f(x)sin(x)2sin cos x的最大值为_.,解析 因为f(x)sin(x)2sin cos x sin xcos cos xsin sin(x), 1sin(x)1,所以f(x)的最大值为1.,1,跟踪训练3,解析答案,解析答案,返回,思想与方法系列,思想与方法系列,8.化归思想和整体代换思想在三角函数中的应用,温馨提醒,解析答案,思维点拨,返回,思维点拨,温馨提醒,解析答案,规范解答,温馨提醒,解析答案,温馨提醒,温馨提醒,(1)讨论三角函数的性质,要先利用三角变换化成yAsin(x),的确定一定要准确. (2)将x视为一个整体,设xt,可以借助ysin t的图象讨论函数的单调性、最值等.,返回,思想方法 感悟提高,1.三角函数的求值与化简要注意观察角、函数名称、式子结构之间的联系,然后进行变换. 2.利用三角函数值求角要考虑角的范围. 3.与三角函数的图象与性质相结合的综合问题.借助三角恒等变换将已知条件中的函数解析式整理为f(x)Asin(x)的形式,然后借助三角函数图象解决.,方法与技巧,1.利用辅助角公式,asin xbcos x转化时一定要严格对照和差公式,防止弄错辅助角. 2.计算形如ysin(x), xa,b形式的函数最值时,不要将x的范围和x的范围混淆.,失误与防范,返回,练出高分,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,sin 22cos2sin 2cos 21,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(1)求A的值;,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(1)求函数f(x)的值域;,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,所以函数f(x)的值域为3,1.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解 由题设条件及三角函数的图象和性质可知,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,即sin cos cos cos sin ,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,于是sin sin(),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,答案 ,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,所以k就是单位圆x2y21的左半圆上的动点,P(sin 2x,cos 2x)与定点Q(0,2)所成直线的斜率.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(1)试求的值;,解析答案,返回,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解 f(x)2cos2x12 cos xsin x,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,返回,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
展开阅读全文