2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5.doc

上传人:tia****nde 文档编号:2397638 上传时间:2019-11-23 格式:DOC 页数:4 大小:115KB
返回 下载 相关 举报
2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5.doc_第1页
第1页 / 共4页
2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5.doc_第2页
第2页 / 共4页
2019-2020年高中数学 第二章《解三角形》之三角形中的几何计算教案(二) 北师大版必修5.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
2019-2020年高中数学 第二章解三角形之三角形中的几何计算教案(二) 北师大版必修5一、教学目标:1、会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;2、搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;3、理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;4、通过解三角形的应用的学习,提高解决实际问题的能力。二、教学重点:实际问题向数学问题的转化及解斜三角形的方法教学难点:实际问题向数学问题转化思路的确定三、教学方法:启发引导式四、教学过程:(一)复习回顾:1正弦定理:2余弦定理: ,3解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力下面,我们将举例来说明解斜三角形在实际中的一些应用(二)、探析范例:例1:某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45、距离A为10海里的C处,并测得渔船正沿方位角为105的方向,以9海里的速度向某小岛B靠拢,我海军舰艇立即以21海里的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间分析:设舰艇从A处靠近渔船所用的时间为 ,则利用余弦定理建立方程来解决较好,因为如图中的1,2可以求出,而AC已知,BC、AB均可用表示,故可看成是一个已知两边夹角求第三边问题解:设舰艇从A处靠近渔船所用的时间为,则AB21海里,BC9 海里,AC10 海里,ACB1245(180105)120,根据余弦定理,可得AB2AC2BC22ACBCcos120得(21)2102(9)22109cos120,即36292100解得1,2 (舍去)AB2114,BC96再由余弦定理可得cosBACBAC2147,4521476647所以舰艇方位角为6647,小时即40分钟答:舰艇应以6647的方位角方向航行,靠近渔船则需要40分钟评述:解好本题需明确“方位角”这一概念,方位角是指由正北方向顺时针旋转到目标方向线的水平角,其范围是(0,360)在利用余弦定理建立方程求出后,所求舰艇方位角就转化为一个已知三边求角的问题,故仍然利余弦定理例2:如图所示,已知半圆的直径AB2,点C在AB的延长线上,BC1,点P为半圆上的一个动点,以DC为边作等边PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值分析:要求四边形OPDC面积的最大值,这首先需要建立一个面积函数,问题是选谁作为自变量,注意到动点P在半圆上运动与POB大小变化之间的联系,自然引入POB作为自变量建立函数关系四边形OPDC可以分成OPC与等边PDC,OPC可用OPOCsin表示,而等边PDC的面积关键在于边长求解,而边长PC可以在POC中利用余弦定理表示,至于面积最值的获得,则通过三角函数知识解决解:设POB,四边形面积为,则在POC中,由余弦定理得:PC2OP2OC22OPOCcos54cosOPCPCD(54cos)2sin()当即时,max2评述:本题中余弦定理为表示PCD的面积,从而为表示四边形OPDC面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性另外,在求三角函数最值时,涉及到两角和正弦公式sin()sincoscossin的构造及逆用,应要求学生予以重视(三)随堂练习:1已知两地的距离为两地的距离为,现测得,则两地的距离为 ( ) A. B. C. D. 2在ABC中,已知角B45,D是BC边上一点,AD5,AC7,DC3,求AB解:在ADC中,cosC又0C180,sinC 在ABC中,AB评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用2、 如图,在四边形ABCD中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135 求BC的长。解:在ABD中,设BD=x则即 整理得:解之:(舍去)由余弦定理: (四)小结:通过本节学习,要求大家在了解解斜三角形知识在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力(五)、课后作业:课本本节2-1 B组2、3w.w.w.k.s.5.u.c.o.m 补充题:在ABC中已知a2bcosC,求证:ABC为等腰三角形证法一:欲证ABC为等腰三角形可证明其中有两角相等,因而在已知条件中化去边元素,使只剩含角的三角函数由正弦定理得a2bcosC,即2cosCsinBsinAsin(BC)sinBcosCcosBsinCsinBcosCcosBsinC0即sin(BC)0,BC()B、C是三角形的内角,BC,即三角形为等腰三角形证法二:根据射影定理,有abcosCccosB,又a2bcosC2bcosCbcosCccosBbcosCccosB,即又即tanBtanCB、C在ABC中,BCABC为等腰三角形五、教后反思:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!