2019-2020年高三数学 双曲线的简单几何性质示范教案(2)新人教A版.doc

上传人:tia****nde 文档编号:2357438 上传时间:2019-11-21 格式:DOC 页数:2 大小:79.50KB
返回 下载 相关 举报
2019-2020年高三数学 双曲线的简单几何性质示范教案(2)新人教A版.doc_第1页
第1页 / 共2页
2019-2020年高三数学 双曲线的简单几何性质示范教案(2)新人教A版.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高三数学 双曲线的简单几何性质示范教案(2)新人教A版教学目标1.掌握双曲线的准线方程.2.能应用双曲线的几何性质求双曲线方程;3.应用双曲线知识解决生产中的实际问题.教学重点 双曲线的准线与几何性质的应用教学难点双曲线离心率、准线方程与双曲线关系. 教学方法 启发式教具准备 三角板教学过程I.复习回顾:师:上一节,我们利用双曲线的标准方程推导了双曲线的几何性质,下面我们作一简要的回顾(略),这一节我们将继续研究双曲线的几何性质及其应用.II.讲授新课:例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m,上口半径为13 m,下口半径为25 m,高55 m.选择适当的坐标系,求出此双曲线的方程(精确到1m).解:如图817,建立直角坐标系xOy,使A圆的直径AA在x轴上,圆心与原点重合.这时上、下口的直径CC、BB平行于x轴,且=132 (m),=252 (m).设双曲线的方程为 (a0,b0)令点C的坐标为(13,y),则点B的坐标为(25,y55).因为点B、C在双曲线上,所以 解方程组由方程(2)得 (负值舍去).代入方程(1)得化简得 19b2+275b18150=0 (3)解方程(3)得 b25 (m).所以所求双曲线方程为:说明:这是一个有实际意义的题目.解这类题目时,首先要解决以下两个问题;(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来.例3 点M(x,y)与定点F(c,o)的距离和它到定直线l:x=的距离的比是常数求点M的轨迹.解:设d是点M到直线l的距离.根据题意,所求轨迹是集合p=,由此得.化简得 (c2a2)x2-a2y2=a2(c2a2).设c2a2=b2,就可化为: 这是双曲线的标准方程,所以点M的轨迹是实轴长、虚轴长分别为2a、2b的双曲线.(图818)说明:此例题要求学生进一步熟悉并熟练掌握求解曲线轨迹方程的一般步骤.6.双曲线的准线:由例3可知,当点M到一个定点的距离和它到一条定直线的距离的比是常数e=(e1)时,这个点的轨迹是双曲线.定点是双曲线的焦点,定直线叫双曲线的准线,常数e是双曲线的离心率.准线方程:x=其中x=相应于双曲线的右焦点F(c,0);x=相应于左焦点F(c,0).师:下面我们通过练习来进一步熟悉双曲线几何性质的应用.III.课堂练习:课本P113 2、3、4、5.要求学生注意离心率、准线方程与双曲线的关系的应用.课堂小结师:通过本节学习,要求大家熟练掌握双曲线几何性质的应用,并注意利用离心率、准线方程与双曲线的关系确定双曲线方程的方法,并了解双曲线在实际中的应用问题.课后作业 习题8.4 2,3,4,7板书设计8.4.2例2 例3 6.双曲线的 学生 准线 练习教学后记
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!