高考数学一轮总复习 第六章 第4节 二元一次不等式(组)与简单的线性规划问题课件.ppt

上传人:sh****n 文档编号:2208570 上传时间:2019-11-17 格式:PPT 页数:47 大小:1.19MB
返回 下载 相关 举报
高考数学一轮总复习 第六章 第4节 二元一次不等式(组)与简单的线性规划问题课件.ppt_第1页
第1页 / 共47页
高考数学一轮总复习 第六章 第4节 二元一次不等式(组)与简单的线性规划问题课件.ppt_第2页
第2页 / 共47页
高考数学一轮总复习 第六章 第4节 二元一次不等式(组)与简单的线性规划问题课件.ppt_第3页
第3页 / 共47页
点击查看更多>>
资源描述
第六章 不等式,第4节 二元一次不等式(组)与简单的线性规划问题,1会从实际情境中抽象出二元一次不等式组 2了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组 3会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决,要点梳理 1二元一次不等式(组)的解集 满足二元一次不等式(组)的x和y的取值构成的_,叫做二元一次不等式(组)的解,所有这样的_构成的集合称为二元一次不等式(组)的解集 2二元一次不等式(组)表示的平面区域 (1)在平面直角坐标系中二元一次不等式(组)表示的平面区域,有序数对(x,y),有序数对(x,y),(2)平面区域的确定 对于直线AxByC0同一侧的所有点,把它的坐标(x,y)代入AxByC,所得的符号都_,所以只需在此直线的同一侧取某个特殊点(x0,y0)作为测试点,由Ax0By0C的符号即可断定AxByC0表示的是直线AxByC0哪一侧的平面区域,边界,边界,交集,相同,3线性规划的有关概念,不等式(组),一次,最大值,最小值,一次,线性约束条件,可行解,最大值,最小值,质疑探究:最优解一定唯一吗? 提示:不一定当线性目标函数对应的直线与可行域多边形的一条边平行时,最优解可能有多个甚至无数个,解析 x3y60表示直线x3y60以及该直线下方的区域,xy20表示直线xy20上方的区域,故选B. 答案 B,解析 注意到直线kxy0恒过原点,在坐标平面内画出题中的不等式组表示的平面区域,结合题意得直线kxy0与直线xy40垂直时满足题意,于是有k(1)1,由此解得k1,选D. 答案 D,解析 作出不等式组所表示的平面区域,如图中阴影部分所示作出直线l:2xy0,平移该直线,当直线经过点A(4,3)时,直线l的截距最大,此时zzxy取得最大值,最大值是11 . 故选D.,答案 D,4若点(1,3)和(4,2)在直线2xym0的两侧,则m的取值范围是_ 解析 由题意可得(213m)2(4)2m0,即(m5)(m10)0,5m10. 答案 5m10,解析 作出不等式组的可行域,如图阴影部分所示,,答案 3,3,答案 A,拓展提高 (1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式组若满足不等式组,则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应于特殊点异侧的平面区域 (2)当不等式中带等号时,边界为实线,不带等号时,边界应画为虚线,特殊点常取原点 (3)求平面区域的面积,要先画出不等式(组)表示的平面区域,然后根据平面区域的形状求面积,必要时分割区域为特殊图形求解,解析 由图像知k0.,答案 D,思路点拨 设z2xy,则目标函数z2xy是直线形式,可通过平行移动,求最值,设z2xy,平移直线2xy0,易知在直线xy4与直线xy2的交点A(3,1)处,z2xy取得最大值7. 故选C. 答案 C,拓展提高 (1)利用线性规划求目标函数最值的步骤 画出约束条件对应的可行域; 将目标函数视为动直线,并将其平移经过可行域,找到最优解对应的点; 将最优解代入目标函数,求出最大值或最小值 (2)对于已知目标函数的最值,求参数问题,把参数当作已知数,找出最优解代入目标函数由目标函数的最值求得参数的值,答案 1,考向三 实际生活中的线性规划问题 例3 某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为( ) A31 200元 B36 000元 C36 800元 D38 400元 思路点拨 把车辆数、人数作为约束条件,把租金数作为目标函数,用线性规划求最小值,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值zmin36 800(元),答案 C,拓展提高 利用线性规划解决实际问题的求解步骤如下: (1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,主要变量有哪些由于线性规划应用题中的量较多,为了了解题目中量与量之间的关系,可以借助表格或图形 (2)设元:设问题中起关键作用的(或关联较多的)量为未知量x,y,并列出相应的不等式组和目标函数 (3)作图:准确作图,平移找点(最优解) (4)求解:代入目标函数求解(最大值或最小值) (5)检验:根据结果,检验反馈,活学活用3 某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车某天需送往A地至少72吨的货物,派用的每辆车需满载且只能送一次派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润z为( ) A4 650元 B4 700元 C4 900元 D5 000元,然后平移目标函数对应的直线450x350y0(即9x7y0)知,当直线经过直线xy12与2xy19的交点(7,5)时,目标函数取得最大值,即z450735054 900.,答案 C,思路点拨 与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成,解析 由题意知,所求的|AB|的最小值,即为区域1中的点到直线3x4y90的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,,答案 B,解析 由于zx22xy2(x1)2y21,,答案 9,方法点睛 搞清是与向量、解析几何、三角或函数等哪类知识问题相结合,从而利用相关知识转化求解,答案 A,思维升华 【方法与技巧】,3解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题,【失误与防范】,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!