资源描述
1 毕业设计(论文)外文参考文献翻译 机械工程 系(院) 20 08 届 题 目 (中文) 电主轴的机械设计 (英文) of 生姓名 专业班 完成日期: 2008 年 3 月 23 日 目 录 2 ( 8) 2. 高速电主轴单元( 14) of is 3 is of , of of it to of of 1, it is to of is is in as It is of of of in of is to to to of is of , of it is of 2 of .1 of is of be in a of in of of of of .2 is up as , is of of is of of It is to be in in of to of 4 5 of 8 9 10 1 of of of of of .3 to or is C , of is 3, of be to a of be a of of is of as as as to .1 of to is to be of in it is It is of to be in of of is at to in of of of is to , Is of to to to so is as ( 1 ) of of ( 2 ) of in ( 3 ) of of in ( 4 ) of of of of 5 .2 in to of of of to of of as of in in is of is it is as to it to of by is is a of of it be of is of be of of in of by in is of in of of of of up of is of of of of of by it is of of of .3 of If of of in in in of up is is is to so to is , of in , to of is as as of to of ( 1 ) of to ( 2 ) do to ( 3 ) of as .4 of of ao of of in to of of of in of to to at of e of of of of 1 4 of of it is to to on to of in on or on as of .5 in of of of as as of of is it to It is of of of is to in is is to is is in of of it is of to it is to to It is of of of is is as up to of is of is of of of to of of a of 4 of of of of of of in ( 1 ) to at of 2 ) to 3 ) to 4 ) to 5 ) to 6 ) to 电主轴技术水平分析 摘要: 电主轴是高速数控加工机床的 “心脏部件 ”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势。 关键词: 电主轴 陶瓷球混合轴承 油气润滑 1、概述 由于高速加工不但可以大幅度提高加工效率,而且还可以显著提高工件的加工质量,所以其应用领域非常广泛,特别是在航空航天、汽车和模具等制造业中。于是,具有高速加工能力的数控机床已成为市场新宠。目前,国内外各著名机床制造商在高 速数控机床中广泛采用电主轴结构,特别是在复合加工机床、多轴联动、多面体加工机床和并联机床中。电主轴是高速数控加工机床的 “心脏部件 ”,其性能指标直接决定机床的水平,它是机床实现高速加工的前提和基本条件。 2、电主轴的工作原理、典型结构及优点 9 主轴的工作原理 电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。 电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间,其优点是主轴单元的轴 向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高 。 电主轴省去了带轮或齿轮传动,实现了机床的 “零传动 ”,提高了传动效率。电主轴的刚性好、回转精度高、快速响应性好,能够实现极高的转速和加、减速度及定角度的快速准停( 调速范围宽。 3、电主轴的关键技术 “电主轴 ”的概念不应简单理解为只是一根主轴套筒,而应该是一套组件,包括:定子、转子、轴承、高速变频装置、润滑装置、冷却装置等。因此电主轴是高速轴承技术、润滑技术、冷却技术、动平衡技术、精密制造与装配技术以及电机高速驱动等技术的综合运用。 实现电主轴高速化精密化的关键是高速精密轴承的应用。目前在高速精密电主轴中应用的轴承有精密滚动轴承、液体动静压轴承、气体静压轴承和磁悬浮轴承等,但主要是精密角接触陶瓷球轴承和精密圆柱滚子轴承。液体动静压轴承的标准化程度不高;气体静压轴承不适合于大功率场合;磁悬浮轴承由于控制系统复杂,价格昂贵,其实用性受到限制。 角接触球轴承不但可同时承受径向和轴向载荷,而且刚度高、高速性能好、结构简单紧凑、品种规格繁多 、便于维修更换,因而在电主轴中得到广泛的应用。目前随着陶瓷轴承技术的发展,应用最多的电主轴轴承是混合陶瓷球轴承,即滚动体使用 用 “小珠密珠 ”结构,轴承套圈为 种混合轴承通过减小离心力和陀螺力矩,来减小滚珠与沟道间的摩擦,从而获得较低的温升及较好的高速性能。 陶瓷球混合轴承与钢球轴承相比,优点如下: ( 1) 陶瓷与钢组成的陶瓷球轴承摩擦性能非常好,能降低材料与润滑剂的应力。 ( 2)因陶瓷密度低,可降低运转时的离心力。 ( 3)陶瓷较低的热膨胀系数有效降低了轴承预加负荷的变化。 ( 4)陶瓷的弹性模量较高,可以提高轴承的刚性。 上述因素大幅度地延长了轴承的寿命和提升了轴承的运转极限速度。 10 高速电主轴必须采用合理的、可控制的轴承润滑方式来控制轴承的温升,以保证数控机床工艺系统的精度和稳定性。采用滚动轴承的电主轴的润滑方式目前主要有脂润滑、油雾润滑和油气润滑等方式。 脂润滑在转速相对较低的电主轴中是较常见的润滑方式。脂润滑型电主轴的润滑系统简单、使用方便、无污染、通用性强。 油雾润滑具有润滑和冷却双重作用,它以压缩空气为动力,通过油雾器将油液雾化并混入空气流中 ,然后把其输送到需要润滑的位置。油雾润滑所需设备简单,维修方便,价格比较便宜,是一种普遍使用的高速电主轴润滑方式。但它有污染环境,油耗比较高等缺点。随着人们对环保要求的提高,油雾润滑方式必将逐渐被淘汰。 油气润滑技术是利用压缩空气将微量的润滑油分别连续不断地、精确地供给每一套主轴轴承,微小油滴在滚动和内、外滚道间形成弹性动压油膜,而压缩空气则可带走轴承运转所产生的部分热量。 实践表明在润滑中供油量过多或过少都是有害的,而前两种润滑方式均无法准确地控制供油量多少,不利于主轴轴承转速和寿命的提高。而新近发展起来 的油气润滑方式则可以精确地控制各个摩擦点的润滑油量,可靠性极高。实践证明,油气润滑是高速大功率电主轴轴承的最理想润滑方法,但其所需设备复杂,成本高。由于油气润滑方式润滑效果理想,目前已成为国际上最流行的润滑方式。 电主轴有两个主要的内部热源:内置电动机的发热和主轴轴承的发热。如果不加以控制,由此引起的热变形会严重降低机床的加工精度和轴承使用寿命,从而导致电主轴的使用寿命缩短。 电主轴由于采用内藏式主轴结构形式,位于主轴单元体中的电机不能采用风扇散热,因此自然散热条件较 差。电机在实现能量转换过程中,内部产生功率损耗,从而使电机发热。研究表明,在电机高速运转条件下,有近 1/3的电机发热量由电机转子产生,并且转子产生的绝大部分热量都通过转子与定子间的气隙传入定子中;其余 2/3的热量产生于电机的定子。所以,对电机产生发热的主要解决方法是对电机定子采用冷却液的循环流动来实行强制冷却。典型的冷却系统是用外循环水式冷却装置来冷却电机定子,将电机的热量带走。 角接触球轴承的发热主要是滚子与滚道之间的滚动摩擦、高速下所受陀螺力矩产生的滑动摩擦以及润滑油的粘性摩擦等产生的。减小轴承发热量的 主要措施: ( 1)适当减小滚珠的直径 减小滚珠直径可以减小离心力和陀螺力矩,从而减小摩擦,减少发热量。 ( 2)采用新材料 比如采用陶瓷材料做滚珠,陶瓷球轴承与钢质角接触球轴承相比,在高速回转时,滚珠与滚道间的滚动和滑动摩擦减小,发热量降低。 ( 3)采用合理的润滑方式 油气和油雾等润滑方式对轴承不但具有润滑作用,还具有一定的冷却作用。 电主轴要获得好的性能和使用寿命,必须对电主轴各个部分进行精心设计和制造。电主轴的定子由具有高导磁率的优质矽钢片迭压而成,定子内腔带有冲制嵌线槽。 转子由转子铁11 芯、鼠笼和转轴三部分组成。主轴箱的尺寸精度和位置精度也将直接影响主轴的综合精度。通常将轴承座孔直接设计在主轴箱上,为加装电机定子,必须至少开放一端。 主轴高速旋转时,任何小的不平衡质量即可引起电主轴大的高频振动。因此精密电主轴的动平衡精度要求达到 于这种等级的动平衡,采用常规的方法即仅在装配前对主轴上的每个零件分别进行动平衡是远远不够的,还需在装配后进行整体的动平衡,甚至还要设计专门的自动平衡系统来实现主轴的在线动平衡。另外,在设计电主轴时,必须严格遵守结构对称原则,键联接和螺 纹联接在电主轴上被禁止使用,而普遍采用过盈联接,并以此来实现转矩的传递。过盈联接与螺纹联接或键联接相比有:不会在主轴上产生弯曲和扭转应力,对主轴的旋转精度没有影响;主轴的动平衡易得到保证等优点。转子与转轴之间的过盈联接分为两类,一类是通过套筒实现的,此结构便于维修拆卸;另一类是没有套筒,转子直接过盈联接在转轴上,此类联接转子装配后不可拆卸。由于内孔与转轴配合面之间有很大的过盈量,所以转子与转轴可以采用转轴冷缩和转子热胀法装配。带有套筒的联接拆卸时,需向转子套筒上预留的油孔中高压注油,迫使转子的过盈套筒涨开, 即可顺利拆卸下电机的转子。电机定子通过一个冷却套固定装在电主轴的箱体中。 在数控机床中,电主轴通常采用变频调速方法。目前主要有普通变频驱动和控制、矢量控制驱动器的驱动和控制以及直接转矩控制三种控制方式。 普通变频为标量驱动和控制,其驱动控制特性为恒转矩驱动,输出功率和转速成正比。普通变频控制的动态性能不够理想,在低速时控制性能不佳,输出功率不够稳定,也不具备 价格便宜、结构简单,一般用于磨床和普通的高速铣床等。 矢量控制技术模仿直流电动机的控制,以转子磁场定向,用矢量变换的 方法来实现驱动和控制,具有良好的动态性能。矢量控制驱动器在刚启动时具有很大的转矩值,加之电主轴本身结构简单,惯性很小,故启动加速度大,可以实现启动后瞬时达到允许极限速度。这种驱动器又有开环和闭环两种,后者可以实现位置和速度的反馈,不仅具有更好的动态性能,还可以实现 前者动态性能稍差,也不具备 价格较为便宜。 直接转矩控制是继矢量控制技术之后发展起来的 一 种新型的高性能交流调速技术,控制思想新颖,系统结构简洁明了,适合于高速电主轴的驱动, 能满足高速电主轴高转速、宽调速范围、高速瞬间准停的动态 特性和静态特性的要求,已成为交流传动领域的一个热点技术。 4、电主轴的发展趋势 随着机床技术、高速切削技术的发展和实际应用的需要,人们对机床电主轴的性能
展开阅读全文