初高中衔接 函数专题复习.doc

上传人:最*** 文档编号:1584787 上传时间:2019-10-29 格式:DOC 页数:17 大小:1.39MB
返回 下载 相关 举报
初高中衔接 函数专题复习.doc_第1页
第1页 / 共17页
初高中衔接 函数专题复习.doc_第2页
第2页 / 共17页
初高中衔接 函数专题复习.doc_第3页
第3页 / 共17页
点击查看更多>>
资源描述
初高中衔接 函数专题复习专题一 一次函数及其基本性质一、知识要点及典型例题1、正比例函数形如的函数称为正比例函数,其中k称为函数的比例系数.(1)当k0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大y也增大;(2)当k0,b0,这时此函数的图象经过第一、二、三象限;y随x的增大而增大; (2)当k0,b0,这时此函数的图象经过第一、三、四象限;y随x的增大而增大; (3)当k0,这时此函数的图象经过第一、二、四象限;y随x的增大而减小; (4)当k0,b0,这时此函数的图象经过第二、三、四象限;y随x的增大而减小.例1 在一次函数y(m3)xm-1x3中,符合x0,则m的值为 .例2 已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A、2 B、1 C、0 D、2例3 已知一次函数y=kx+b的图像经过二四象限,如果函数上有点,如果满足,那么 .3、待定系数法求解函数的解析式(1)一次函数的形式可以化成一个二元一次方程,函数图像上的点满足函数的解析式,亦即满足二元一次方程.(2)两点确定一条直线,因此要确定一次函数的图像,我们必须寻找一次函数图像上的两个点,列方程组,解方程,最终求出参数.例4 已知 一次函数的图象经过M(0,2),(1,3)两点.(1)求k、b的值;(2)若一次函数的图象与x轴的交点为A(a,0),求a的值.4、一次函数与方程、不等式结合(1)一次函数中的比较大小问题,主要考察(2)一次函数的交点问题 求解两个一次函数的交点,只需通过将两个一次函数联立,之后通过解答一个二元一次方程组即可.例5 已知一次函数的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式的解集为( )A、x -1 C、x1 D、x1时,y的取值范围是( )A、y=1 B、1y49.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是( )A、 B、 C、 D、10.已知一次函数图象过点,且与两坐标轴围成的三角形面积为,求此一次函数的解析式.11.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B的坐标为(0,b)(b0) P是直线AB上的一个动点,作PCx轴,垂足为C记点P关于y轴的对称点为P(点P不在y轴上),连结PP,PA,PC设点P的横坐标为a(1)当b3时,求直线AB的解析式; 若点P的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与PC的交点为D 当PD DC=1 3时,求a的值;(3)是否同时存在a,b,使PCA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.专题二 反比例函数及其基本性质一、知识要点及典型例题1、反比例函数的基本形式一般地,形如(为常数,)的函数称为反比例函数.还可以写成 2、反比例函数中比例系数的几何意义(1)过反比例函数图像上一点,向x轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k的绝对值的一半.(2)正比例函数y=k1x(k10)与反比例函数y=(k0)的图像交于A、B两点,过A点作ACx轴,垂足是C,三角形ABC的面积设为S,则S=|k|,与正比例函数的比例系数k1无关.(3)正比例函数y=k1x(k10)与反比例函数y=(k0)的图像交于A、B两点,过A点作ACx轴,过B点作BCy轴,两线的交点是C,三角形ABC的面积设为S,则S=2|k|,与正比例函数的比例系数k1无关.例1 点P是x轴正半轴上的一个动点,过P作x轴的垂线交双曲线于点Q,连续OQ,当点P沿x轴正方向运动时,RtQOP的面积( )A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定例2 如图,双曲线与O在第一象限内交于P、Q 两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为 . 3、反比例函数的图像问题(1)反比例函数的图像取决于比例系数.(2)利用反比例函数的图像与一次函数、一元一次不等式结合例1 函数与在同一坐标系中的图象可能是(如图所示)例2 如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.(1)求反比例函数的解析式;(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小. 例3 已知一次函数y1=x1和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1y2时,x的取值范围是( )A、x2 B、1x0 C、x2,1x0 D、x2,x04、反比例函数的基本应用例1 如图,等腰梯形ABCD放置在平面直角坐标系中,已知、,反比例函数的图象经过点C(1)求C点坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移个单位后,使点B恰好落在双曲线上,求的值例2 如图,点A在双曲线y的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC2AB,点E在线段AC上,且AE3EC,点D为OB的中点,若ADE的面积为3,则k的值为_二、巩固练习1.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(2,2),则k的值为( )A、1B、3C、4D、1或32.如图所示,在反比例函数的图象上有点,它们的横坐标依次为1,2,3,4,分别过些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则 .3.如图,直线和双曲线交于A、B亮点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设AOC面积是S1、BOD面积是S2、POE面积是S3、则( )A、S1S2S3 B、 S1S2S3 C、S1=S2S3 D、S1=S2S3xyOABCD4.一次函数与反比例函数的图像在同一平面直角坐标系中是( )5.如图,反比例函数y1=和正比例函数y2=k2x 的图象交于A(-1,-3)、B(1,3)两点,若k2x,则x的取值范围是A、-1x0 B、-1x1 C、x-1或0x1 D、-1x0或x16.点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=的图象上,若x1x20x3,则y1,y2,y3的大小关系是( ).A、 y3y1y2 B、y1y2y3C、y3y2y1 D、y2y10时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小;当a0时,开口向上;当a0 B.a+b=0 C.2b+c0 D.4a十c0时x的取值范围.14.如图,已知抛物线y=ax2+bx+c(a0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,)(1)求抛物线的函数解析式及点A的坐标; (2)在抛物线上求点P,使SPOA=2SAOB;15.一座拱桥的轮廓是抛物线型(如左图所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如右图所示),求抛物线的解析式;(2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m.高3m的三辆汽车(汽车间的间隔忽略不计))?请说明你的理由.16.如图,抛物线与x轴相交于A.B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A.B.C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF/DE交抛物线于点F,设点P的横坐标为m.用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!