高教版中职数学基础模块上册 电子教案.doc

上传人:最*** 文档编号:1560367 上传时间:2019-10-28 格式:DOC 页数:144 大小:5.15MB
返回 下载 相关 举报
高教版中职数学基础模块上册 电子教案.doc_第1页
第1页 / 共144页
高教版中职数学基础模块上册 电子教案.doc_第2页
第2页 / 共144页
高教版中职数学基础模块上册 电子教案.doc_第3页
第3页 / 共144页
点击查看更多>>
资源描述
_ 说明:教参里的参考教案,供大家参考。【课题】11 集合的概念【教学目标】知识目标:(1)理解集合、元素的概念及其关系,掌握常用数集的字母表示;(2)掌握集合的列举法与描述法,会用适当的方法表示集合能力目标:通过集合语言的学习与运用,培养分类思维和有序思维,从而提升数学思维能力.情感目标:(1)接受集合语言,经历利用集合语言描述元素与集合间关系的过程,养成规范意识,发展严谨的作风。(2)感受利用数学知识描述和研究实际问题的乐趣,发展学好数学课程的信心。(3)经历合作学习的过程,树立团队合作意识。【教学重点】集合的表示法 【教学难点】集合表示法的选择与规范书写【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始1学习旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2老师导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味.3目的运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学4准备必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流回答为什么要学数学?学什么样的数学?怎么学数学?介绍说明讲解说明倾听了解领会了解引领学生了解新阶段的数学学习特点重点是要树立学生的数学学习信心8*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一例如,按照使用功能分类存放物品,在取用时就十分方便这就是我们将要研究学习的1.1集合介绍说明了解引入教学内容10*创设情景 兴趣导入问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子那么如何将这些商品放在指定的篮筐里?解决 显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐,彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐归纳 面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的元素播放课件质疑引导分析观看课件思考自我建构从实际事例使学生自然的走向知识点启发学生体会集合概念15*动脑思考 探索新知概念将某些确定的对象看成一个整体就构成一个集合,简称集组成集合的对象叫做这个集合的元素 如大于2并且小于5的自然数组成的集合是由哪些元素组成?表示一般采用大写英文字母表示集合,小写英文字母表示集合的元素拓展集合中的元素具有下列特点: (1) 互异性:一个给定的集合中的元素都是互不相同的;(2) 无序性:一个给定的集合中的元素排列无顺序;(3) 确定性:一个给定的集合中的元素必须是确定的.不能确定的对象,不能组成集合例如,某班跑得快的同学,就不能组成集合 例1 下列对象能否组成集合:(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程的所有解;(4)不等式的所有解解 (1) 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合(2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合(3)方程的解是1和1,它们是确定的对象,所以可以组成集合(4)解不等式,得,它们是确定的对象,所以可以组成集合类型由方程的所有解组成的集合叫做这个方程的解集由不等式的所有解组成的集合叫做这个不等式的解集像方程的解组成的集合那样,由有限个元素组成的集合叫做有限集像不等式x-20的解组成的集合那样,由无限个元素组成的集合叫做无限集像平面上与点O的距离为2 cm的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集由数组成的集合叫做数集方程的解集与不等式的解集都是数集所有自然数组成的集合叫做自然数集,记作 所有正整数组成的集合叫做正整数集,记作或所有整数组成的集合叫做整数集,记作所有有理数组成的集合叫做有理数集,记作所有实数组成的集合叫做实数集,记作不含任何元素的集合叫做空集,记作例如,方程x2+1=0的实数解的集合里不含有任何元素,所以这个解集就是空集关系元素是集合A的元素,记作(读作“属于A”), 不是集合A的元素,记作(读作“不属于A”)集合中的对象(元素)必须是确定的对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一总结归纳讲解说明强调质疑分析讲解提问归纳说明引领强调讲解分析强调讲解理解领会记忆思考回答理解领会明确思考了解理解记忆领会带领学生理解整体个体意义为后续学习做准备通过例题进一步领会元素确定性观察学生是否理解知识点集合类型比较简单可以让学生自己分析强调各个数集的内涵和表示字母突出强调符号规范书写35*运用知识 强化练习 练习1.1.11用符号“”或“”填空:(1)3 ,0.5 ,3 ;(2)1.5 ,5 ,3 ;(3)0.2 , ,7.21 ;(4)1.5 ,1.2 , 2指出下列各集合中,哪个集合是空集?(1)方程的解集; (2)方程的解集提问巡视指导思考动手求解交流及时了解学生知识掌握情况40*创设情景 兴趣导入问题 不大于5的自然数所组成的集合中有哪些元素?小于5的实数所组成的集合中有哪些元素?解决 不大于5的自然数所组成的集合中只有0、1、2、3、4、5这6个元素,这些元素是可以一一列举的.而小于5的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:(1) 集合的元素都是实数;(2)集合的元素都小于5.归纳当集合中元素可以一一列举时,可以用列举的方法表示集合;当集合中元素无法一一列举但元素特征是明显时,可以分析出集合的元素所具有的特征性质,通过对元素特征性质的描述来表示集合质疑引导讲解总结思考自我分析自我建构用较简单的问题给学生参与学习的起点引导学生得出结论45*动脑思考 探索新知集合的表示有两种方法:(1)列举法把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开如不大于5的自然数所组成的集合可以表示为当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法例如,小于100的自然数集可以表示为,正偶数集可以表示为(2)描述法利用元素特征性质来表示集合的方法.在花括号中画一条竖线竖线的左侧写上集合的代表元素x,并标出元素的取值范围,竖线的右边侧写出元素所具有的特征性质如小于5的实数所组成的集合可表示为如果从上下文能够明显看出集合的元素为实数,可以不标出元素的取值范围.上述集合可以表示为.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质例如所有正奇数组成的集合可以表示为正奇数仔细分析讲解关键词语强调说明理解记忆了解理解记忆了解带领学生总结集合两种表示方法特别注意强调写法的规范性50*巩固知识 典型例题例2用列举法表示下列集合:(1)由大于且小于的所有偶数组成的集合;(2)方程的解集分析这两个集合都是有限集(1)题的元素可以直接列举出来;(2)题的元素需要解方程才能得到解(1)集合表示为;(2)解方程得,故方程解集为例3用描述法表示下列各集合:(1)小于5的整数组成的集合;(2)不等式的解集;(3)所有奇数组成的集合;(4)在直角坐标系中,由x轴上所有的点组成的集合;(5)在直角坐标系中,由第一象限所有的点组成的集合;分析 第(1)题元素的取值范围是整数,需要标出,其余题目的元素为实数,不需要标出;第(2)题通过解不等式可以得到;第(3)题是奇数都能写成的形式;第(4)题是x轴上点的纵坐标都是0;第(5)题是第一象限内点的横坐标与纵坐标都是正数解 (1)小于5的整数组成的集合为(2)解不等式得,所以不等式的解集为(3)所有奇数组成的集合为(4)x轴上所有的点组成的集合为(5)由第一象限所有的点组成的集合为说明强调引领讲解说明引领分析强调含义说明观察思考主动求解观察思考求解领会思考求解通过例题进一步领会集合的表示注意观察学生是否理解知识点突出表示法的书写要规范复习对应数学知识60*运用知识 强化练习 教材练习1.1.21用列举法表示下列各集合:(1)方程的解集;(2)由小于20的自然数组成的集合;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合2用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程的解集;(3)大于5的所有偶数所组成的集合;(4)不等式的解集巡视指导动手求解检验学习的效果70*理论升华 整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示总结归纳理解体会从整体再一次突出集合表示方法75*巩固知识 典型例题例4 用适当的方法表示下列集合: (1)方程x+5=0的解集;(2)不等式3x-75的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解 (1)5; (2)x| x4 ;(3) 4,6,8,10; (4) x| x5 引领分析讲解说明领会思考求解进行综合题讲解巩固所归纳的强化点80*运用知识 强化练习 选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程的解集; (3)不等式的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程的解集; (6)不等式组的解集提问巡视指导归纳强调动手求解汇总交流及时了解学生知识掌握情况85*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问回忆反思培养学生总结学习过程能力88*继续探索 活动探究(1)阅读理解: 教材1.1,学习与训练1.1;(2)书面作业: 教材习题1.1,学习与训练1.1训练题;(3)实践调查: 探究生活中集合知识的应用说明记录90【课题】1.2 集合之间的关系【教学目标】知识目标:掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.能力目标:(1)通过集合语言的学习与运用,培养学生的数学思维能力;(2)通过集合的关系的图形分析,培养学生的观察能力.情感目标:(1)经历利用集合语言描述集合与集合间的关系的过程,养成规范意识,发展严谨的作风;(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.【教学重点】集合与集合间的关系及其相关符号表示【教学难点】真子集的概念【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*复习知识 揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1集合 由某些确定的对象组成的整体元素 组成集合的对象2常用数集有哪些?用什么字母表示?3集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:代表元素|元素所具有的特征性质4元素与集合之间有属于或不属于的关系完成下面的问题:用适当的符号 “”或“”填空:(1) 0 ; (2) 0 N; (3) R; (4) 0.5 Z;(5) 1 1,2,3; (6) 2 x|x1; (7)2 x|x=2k+1, kZ那么集合与集合之间又有什么关系呢?质疑引导强调明确回忆加深回答对前面学习的内容进行复习有助于新内容的学习5*创设情景 兴趣导入问题 1设表示我班全体学生的集合,表示我班全体男学生的集合,那么,集合与集合之间存在什么关系呢?2设=数学,语文,英语,计算机应用基础,体育与健康,物理,化学, N =数学,语文,英语,计算机应用基础,体育与健康,那么集合与集合N之间存在什么关系呢?3自然数集Z与整数集N之间存在什么关系呢?解决 显然,问题1中集合的元素(我班的男学生)肯定是集合的元素(我班的学生);问题2中集合的元素肯定是集合的元素;问题3中集合N的元素(自然数)肯定是集合Z的元素(整数)归纳 当集合的元素肯定是集合的元素时称集合包含集合两个集合之间的这种关系叫做包含关系播放课件质疑引导分析观看课件思考理解自我建构用问题引导学生思考集合之间关系启发学生体会包含含义10*动脑思考 探索新知概念一般地,如果集合的元素都是集合的元素,那么称集合包含集合,并把集合叫做集合的子集.表示将集合包含集合记作或(读作“包含”或“包含于”)可以用下图表示出这两个集合之间的包含关系ABA拓展由子集的定义可知,任何一个集合都是它自身的子集,即规定:空集是任何集合的子集,即总结归纳说明强调引导介绍理解领会记忆观察了解带领学生理解包含意义特别介绍符号的规范性图形有助学生加深理解15*巩固知识 典型例题例1 用符号“”、“”、“”或“”填空:(1) ;(2) ;(3) ; (4) ;(5) ; (6) 分析 “” 与“”是用来表示集合与集合之间关系的符号;而“”与“”是用来表示元素与集合之间关系的符号首先要分清楚对象,然后再根据关系,正确选用符号解 (1)集合的元素都是集合的元素,因此 ;(2)空集是任何集合的子集,因此;(3)自然数都是有理数,因此 ;(4)是实数,因此;(5)d不是集合的元素,因此;(6)集合的元素都是集合的元素,因此说明引领讲解强调观察思考领会主动求解通过例题进一步指导学生元素与集合集合与集合关系的分类确定20*运用知识 强化练习 教材练习1.2.1用符号“”、“”、“”或“”填空:(1);(2);(3);(4);(5);(6) 提问巡视指导动手求解交流了解学生知识掌握情况25*动脑思考 探索新知概念如果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集表示记作 (或), 读作“A真包含B”(或“B真包含于A”)拓展空集是任何非空集合的真子集对于集合A、B、C,如果AB,BC,则AC 仔细分析讲解关键词语强调说明理解记忆记忆了解特别强调真子集与子集的区别30*巩固知识 典型例题例2设集合,试写出的所有子集,并指出其中的真子集分析 集合中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合解 的所有子集为除集合外,所有集合都是集合的真子集说明讲解强调观察思考主动求解理解通过例题进一步理解真包含的含义35*运用知识 强化练习 练习1.2.21.设集合,试写出的所有子集,并指出其中的真子集2.设集合,集合,指出集合A与集合B之间的关系巡视指导求解交流检验学习效果40*创设情景 兴趣导入问题设集合A=x|x2-1=0,B =-1,1,那么这两个集合会有什么关系呢?解决由于方程x2-1=0的解是x1= -1,x2=1,所以说集合A中的元素就是1,-1,可以看出集合A与集合B中的元素完全相同,集合A与集合B 相等归纳集合A与集合B中的元素完全相同,只是表示方法不同,我们就说集合A与集合B 相等,即A=B质疑引导分析总结思考理解自我建构启发学生体会相等含义45*动脑思考 探索新知概念一般地,如果两个集合的元素完全相同,那么就说这两个集合相等表示将集合与集合相等记作拓展如果,同时,那么集合的元素都属于集合A,同时集合A的元素都属于集合,因此集合A与集合的元素完全相同,由集合相等的定义知讲解强调说明领会记忆理解强调集合相等的本质含义50*巩固知识 典型例题例3 判断集合与集合的关系分析 要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系解 由得或,所以集合A用列举法表示为;由得或,所以集合B用列举法表示为;可以看出,这两个集合的元素完全相同,因此它们相等,即质疑提问分析引领思考主动求解总结归纳注意复习第一节中有关知识55*理论升华 整体建构元素与集合关系:属于与不属于(、);集合与集合关系:子集、真子集、相等(、=);首先要分清楚对象,然后再根据关系,正确选用符号总结归纳理解体会从整体再次总结60*巩固知识 典型例题例4 用适当的符号填空: 1,3,5 1,2,3,4,5,6; 3,-3; 2 x| |x|=2 ; 2 N; a a ; 0 ; .解 ; x|x2=9=3,-3; 因为,所以; 2N; aa; ; 因为=,所以引领分析质疑讲解说明领会思考求解自我强化巩固所归纳强化点,可以适当的教给学生完成,再进行核对70*运用知识 强化练习 1.用适当的符号填空:(1) ; (2) ;(3) ; (4) ;(5) ; (6) ;(7) ; (8) 2.判断集合与集合的关系提问巡视指导动手求解汇总交流及时了解学生知识掌握情况80*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?引导提问回忆反思培养学生总结学习过程能力85*继续探索 活动探究(1)阅读: 教材章节1.2;学习与训练1.2;(2)书写: 习题1.2,学习与训练1.2训练题;(3)实践:寻找集合和集合关系的生活实例说明记录90【课题】 1.3集合的运算(1)【教学目标】知识目标:理解并集与交集的概念,会求出两个集合的并集与交集能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力情感目标:(1)经历利用集合语言描述集合运算的过程,养成规范意识,发展严谨的作风。(2)经历利用图形研究集合间运算的过程,体验“数形结合”的探究方法。(3)经历合作学习的过程,树立团队合作意识。【教学重点】交集与并集 【教学难点】用描述法表示集合的交集与并集【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*揭示课题1.3集合的运算*创设情景 兴趣导入问题1 在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A=李佳,王燕,张洁,王勇;B=王燕,李炎,王勇,孙颖;C=王燕,王勇.那么这三个集合之间有什么关系?问题3 集合A=直角三角形;B=等腰三角形;C=等腰直角三角形.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合、的相同元素所组成的,这时,将C称作是A与B的交集质疑引导分析归纳总结思考自我分析了解从实际事例使学生自然的走向知识点引导式启发学生思考集合元素之间的关系5*动脑思考 探索新知一般地,对于两个给定的集合A、B,由集合、 的相同元素所组成的集合叫做与的交集,记作,读作“交” 即集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识 典型例题例1 已知集合A,B,求AB.(1) A=1,2,B=2,3;(2) A=a,b,B=c,d , e , f ;(3) A=1,3,5,B= ;(4) A=2,4,B=1,2,3,4分析 集合都是由列举法表示的,因为 AB 是由集合A和集合B中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,AB=1,22,3 =2;(2) 没有相同元素AB=a , bc, d , e , f =;(3) 因为A是含有三个元素的集合, 是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即AB=;(4) 因为A中的每一个元素的都是集合B中的元素,所以AB=A例2设,求分析集合表示方程的解集;集合表示方程的解集两个解集的交集就是二元一次方程组的解集解解方程组得所以例3设,求分析这两个集合都是用描述法表示的集合,并且无法列举出集合的元素我们知道,这两个集合都可以在数轴上表示出来,如下图所示观察图形可以得到这两个集合的交集解由交集定义和上面的例题,可以得到:对于任意两个集合A,B,都有(1);(2),;(3);(4)如果.说明强调引领讲解说明引领强调含义说明启发引导观察思考主动求解观察思考求解领会思考求解了解通过例题进一步领会交集注意观察学生是否理解知识点复习方程组的解法突出数轴的作用强调数形结合可以交给学生自我发现归纳25*运用知识 强化练习 练习1.3.11设,求2设,求3设,求提问巡视指导动手求解交流及时了解学生知识掌握情况35*创设情景 兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A=该班团员;B=该班非团员;C=该班同学.那么这三个集合之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班第一学年的三好学生都有哪些同学?用我们学过的集合来表示:A=李佳,王燕,张洁,王勇;B=王燕,李炎,王勇,孙颖;C=李佳,王燕,张洁,王勇,李炎,孙颖.那么这三个集合之间有什么关系?问题3 集合A=锐角三角形;B=钝角三角形;C=斜三角形.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由集合A、B的所有元素所组成的,这时,将C称作是A与B的并集介绍质疑引导分析了解观看课件思考自我分析从实际事例使学生自然的走向知识点引导式启发学理解集合的元素关系40*动脑思考 探索新知一般地,对于两个给定的集合A、B,由集合、的所有元素所组成的集合叫做与的并集,记作(读作“A并B”)即.集合A与集合B的并集可用图形表示为:(1)AAABABABA(2)(3)求两个集合并集的运算叫做并运算总结归纳仔细分析讲解关键词语思考理解记忆带领学生总结三个问题的统一点得到并集含义45*巩固知识 典型例题例4 已知集合A,B,求AB(1) A=1,2,B=2,3;(2) A=a , b,B=c, d , e , f ;(3) A=1,3,5,B= ;(4) A=2,4,B=1,2,3,4分析 因为AB是由集合A和集合B的所有元素组成,当集合都是用列举法表示时,通过列举这两个集合的元素,可以得到并集,注意相同的元素只列举一次. 解 (1) AB=1,22,3=1,2,3;(2) AB=a , bc , d , e , f =a , b, c , d , e, f ;(3) 因为是不含任何元素的空集,所以AB=1,3,5=1,3,5;(4) 集合A是集合B的真子集,AB=1,2,3,4= B由并集定义和上面的例题,可以得到:对于任意的两个集合A与B,都有:(1);(2),;(3);(4)如果,那么说明强调引领讲解说明说明启发引导观察思考主动求解思考理解了解通过例题进一步领会并集可以交给学生自我发现归纳55*运用知识 强化练习 练习1.3.2 1设,求2设,求提问巡视指导求解交流反馈学习效果60*理论升华 整体建构思考并回答下面的问题:1集合的并集和交集有什么区别?(含义和符号)2在进行集合的并运算和交运算时各自的特点是什么?3集合用列举法和描述法表示时进行运算需要注意的问题是什么?(1)由集合A和集合B的公共元素组成的集合叫做集合A与集合B的交集.由集合A和集合B的所有元素组成的集合叫做集合A与集合B的并集;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理质疑归纳强调小组讨论回答理解强化以学生的小组讨论教师归纳的形式强调重点突破难点70*巩固知识 典型例题例5 设,求,.解 ;.例6 设求,.解 将集合、在数轴上表示: ,.引领分析讲解说明领会思考求解进行并交的对比例题讲解巩固所归纳的强化点75*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.,求,.2.,求,.引导提问巡视指导回忆反思动手求解培养学生总结反思学习过程的能力85*继续探索 活动探究(1)读书部分: 教材章节1.3;(2)书面作业: 学习与训练1.3;(3)实践调查: 举出交集和并集的生活实例说明记录90【课题】 1.3集合的运算(2)【教学目标】知识目标:理解全集与补集的概念,会求集合的补集能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力情感目标:(1)经历利用集合语言描述集合运算的过程,养成规范意识,发展严谨的作风。(2)经历利用图形研究集合间运算的过程,体验“数形结合”的探究方法。(3)经历合作学习的过程,树立团队合作意识。【教学重点】集合的补运算 【教学难点】集合并、交、补的综合运算【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间复习知识 揭示课题 前面学习了集合的并运算和交运算相关问题,试着回忆下面的知识点:1集合的并集和交集有什么区别?(含义和符号) 2在进行集合的并运算和交运算时各自的特点是什么?并运算是将两个集合所有的元素进行合并,交运算是寻找两个集合都有的共同元素3集合用列举法和描述法表示时进行运算需要注意的问题是什么?列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理完成下面的练习:设,求,设,求,下面我们将学习另外一种集合的运算质疑引导强调提问明确介绍回忆加深认识回答交流了解对前面学习的内容进行复习有助于新内容的学习10*创设情景 兴趣导入问题 某学习小组学生的集合为U=王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧,其中在学校应用文写作比赛与技能大赛中获得过金奖的学生集合为P=王明,曹勇,王亮,李冰,张军,那么没有获得金奖的学生有哪些?解决没有获得金奖的学生的集合为Q=赵云,冯佳,薛香芹,钱忠良,何晓慧结论可以看到,P 、Q都是U的子集,并且集合Q是由属于集合U但不属于集合P的元素所组成的集合 质疑引导分析总结归纳思考自我分析领会引导式启发学生理解集合之间元素的关系15*动脑思考 探索新知概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U来表示,所研究的各个集合都是这个集合的子集在研究数集时,常把实数集作为全集如果集合是全集U的子集,那么,由U中不属于的所有元素组成的集合叫做在全集U中的补集 表示集合在全集U中的补集记作,读作“在U中的补集”即 如果从上下文看全集U是明确的,特别是当全集U为实数集R时,可以省略补集符号中的U,将简记为,读作“的补集”集合在全集U中的补集的图形表示,如下图所示:求集合在全集U中的补集的运算叫做补运算仔细分析讲解强调引导说明思考理解记忆观察领会特别注意讲解关键词的含义强调表示方法的书写规范性充分利用图形的直观性20*巩固知识 典型例题例1设,求及分析 集合A的补集是由属于全集U而且不属于集合A的元素组成的集合解;例2设UR,求分析作出集合A在数轴上的表示,观察图形可以得到解 说明通过观察图形求补集时,要特别注意端点的取舍本题中,因为端点1不属于集合A,所以1属于其补集;因为端点2属于集合A,所以2不属于其补集由补集定义和上面的例题,可以得到:对于非空集合A:A()=,A()=U,=,=U,()=A说明讲解引领引导分析讲解说明理解观察思考主动求解观察思考理解自我总结通过例题进一步领会补集的含义及其运算特点突出数轴的作用交给学生自我发现归纳35*运用知识 强化练习 教材 练习1.3.31设,求2设,求提问巡视指导互动求解交流反馈学习效果45*理论升华 整体建构思考并回答下面的问题:1什么是集合交运算?如何用符号表示?如何用图形表示?什么是集合并运算?如何用符号表示?如何用图形表示?什么是集合补运算?如何用符号表示?如何用图形表示?2在进行集合的交、并、补运算时各自的特点是什么?3集合用列举法和描述法表示时进行集合运算需要注意的问题是什么?质疑归纳强调总结小组讨论交流理解强
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!