4.4 解直角三角形的应用 第1课时

上传人:青山 文档编号:1516552 上传时间:2019-10-23 格式:DOC 页数:4 大小:186.50KB
返回 下载 相关 举报
4.4 解直角三角形的应用 第1课时_第1页
第1页 / 共4页
4.4 解直角三角形的应用 第1课时_第2页
第2页 / 共4页
4.4 解直角三角形的应用 第1课时_第3页
第3页 / 共4页
点击查看更多>>
资源描述
4.4 解直角三角形的应用第1课时教学目标【知识与能力】比较熟练地应用解直角三角形的知识解决与仰角、俯角有关的实际问题【过程与方法】通过学习进一步掌握解直角三角形的方法【情感态度价值观】培养学生把实际问题转化为数学问题的能力教学重难点【教学重点】应用解直角三角形的知识解决与仰角、俯角有关的实际问题【教学难点】选用恰当的直角三角形,分析解题思路课前准备无教学过程一、情景导入,初步认知海中有一个小岛A,该岛四周10海里内有暗礁今有货轮由西向东航行,开始在A岛南偏西55的B处,往东行驶20海里后,到达该岛的南偏西25的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流【教学说明】经历探索船是否有触礁危险的过程,进一步体会三角函数在解决实际问题中的应用二、思考探究,获取新知1某探险者某天到达如图所示的点A处,他准备估算出离他的目的地海拔为3500m的山峰顶点B处的水平距离你能帮他想出一个可行的办法吗?分析:如图,BD表示点B的海拔,AE表示点A的海拔,ACBD,垂足为点C.先测量出海拔AE,再测出仰角BAC,然后用锐角三角函数的知识就可以求出A、B之间的水平距离AC.【归纳结论】当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角2如图,在离上海东方明珠塔底部1000m的A处,用仪器测得塔顶的仰角为25,仪器距地面高为1.7m.求上海东方明珠塔的高度(结果精确到1m)解:在RtABC中,BAC25,AC1000m,因此tan25BC1000tan25466.3(m),上海东方明珠塔的高度(约)为466.31.7468米【教学说明】利用实际问题承载数学问题,提高了学生的学习兴趣教师要帮助学生学会把实际问题转化为解直角三角形问题,从而解决问题三、运用新知,深化理解1如图,某飞机于空中A处探测到目标C,此时飞行高度AC1200米,从飞机上看地平面控制点B的俯角1631,求飞机A到控制点B的距离(精确到1米)分析:利用正弦可求解:在RtABC中sinBAB4221(米)答:飞机A到控制点B的距离约为4221米2热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60,热气球与高楼的水平距离为120m.这栋高楼有多高(结果精确到0.1m)?分析:在RtABD中,30,AD120.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.解:如图,30,60,AD120.tan,tan,BDADtan120tan3012040,CDADtan120tan60120120.BDBDCD40120160227.1答:这栋高楼约高277.1m.3如图,在离树BC 12米的A处,用测角仪测得树顶的仰角是30,测角仪AD高为1.5米,求树高BC.(计算结果可保留根号)分析:本题是一个直角梯形的问题,可以通过过点D作DEBC于E,把求CB的问题转化求BE的长,从而可以在BDE中利用三角函数解:过点D作DEBC于E,则四边形DECA是矩形,DEAC12米CEAD1.5米在直角BED中,BDE30,tan30,BEDEtan304米BCBECE(4)米4广场上有一个充满氢气的气球P,被广告条拽着悬在空中,甲乙二人分别站在E、F处,他们看气球的仰角分别是30、45,E点与F点的高度差AB为1米,水平距离CD为5米,FD的高度为0.5米,请问此气球有多高?(结果保留到0.1米)分析:由于气球的高度为PAABFD,而AB1米,FD0.5米,故可设PAh米,根据题意,列出关于h的方程可求解解:设APh米,PFB45,BFPB(h1)米,EABFCDh15(h6)米,在RtPEA中,PAAEtan30,h(h6)tan30,气球的高度约为PAABFD8.210.59.7米【教学说明】巩固所学知识要求学生学会把实际问题转化成数学问题;根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结教师作以补充课后作业布置作业:教材“习题4.4”中第2、4、5题教学反思本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题应选用适当的数学知识加以解决4
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!