2.2 一元二次方程的解法 第4课时

上传人:青山 文档编号:1500048 上传时间:2019-10-23 格式:DOC 页数:2 大小:136KB
返回 下载 相关 举报
2.2 一元二次方程的解法 第4课时_第1页
第1页 / 共2页
2.2 一元二次方程的解法 第4课时_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2.2 一元二次方程的解法第4课时教学目标【知识与能力】1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。 2、会用因式分解法解某些一元二次方程。 3、进一步让学生体会“降次”化归的思想。【过程与方法】经历探索因式分解法解一元二次方程的方法,体会解一元二次方程的基本思想是“降次”。【情感态度价值观】通过用因式分解法将一元二次方程转化为一元一次方程的理解,让学生体会到数学的学习循序渐进的,从而培养学生脚踏实地的精神。教学重难点【教学重点】体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。【教学难点】用因式分解法解某些一元二次方程。课前准备无教学过程一、预学1、提问:(1) 解一元二次方程的基本思路是什么?(2) 现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?2、用两种方法解方程:9(1-3x)2=25二、探究说明:可用因式分解法或直接开平方法解此方程。解得x1= ,x2=- 。1、说一说:因式分解法适用于解什么形式的一元二次方程。归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。2、想一想:展示课本11节问题二中的方程0.01t2-2t =0,这个方程能用因式分解法解吗?引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本11节问题二。把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0解得 tl=0,t2=200。t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。三、讲解例题1、展示课本P8例3。按课本方式引导学生用因式分解法解一元二次方程。2、让学生讨论P9“说一说”栏目中的问题。要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。3、展示课本P9例4。让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。四、课堂小结1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。2、在解方程时,千万注意两边不能同时除以一个含有未知数的代数式,否则可能丢失方程的一个根。五、拓展与提升用因式分解法解下列一元二次方程。议一议:对于含括号的一元二次方程,应怎样适当变形,再用因式分解法解。(1) 2(3x-2)=(2-3x)(x+1); (2) (x-1)(x+3)=12。解 (1) 原方程可变形为 2(3x-2)+(3x-2)(x+1)=0, (3x-2)(x+3)=0, 3x-2=0,或x+3=0, 所以xl= ,x2=-3 (2) 去括号、整理得 x2+2x-3=12,x2+2x-15=0, (x+5)(x-3)=0, x+5=0或x-3=0, 所以x1=-5,x2=3先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。6、 布置作业 2
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!