资源描述
苏教版必修5,第二章 数列 第二节 等差数列及其通项公式,1,一般地,如果一个数列 a1,a2,a3 ,an 从第二项起,每一项与它的前一项的差等于同一个常数d, a2 a1 = a3 - a2 = = an - an-1 = = d 那么这个数列就叫做等差数列。常数d叫做等差数列的公差。,知识回顾,an+1-an=d(nN *),2,通 项 公 式 的 推 导1(归纳猜想),设一个等差数列an的首项是a1,公差是d,则有: a2-a1=d,a3-a2=d,a4-a3=d, 所以有:,an=a1+(n-1)d 当n=1时,上式也成立。,所以等差数列的通项公式是: an=a1+(n-1)d(nN*),问an=? 通过观察:a2, a3,a4都可以用a1与d 表示出来;a1与d的系数有什么特点?,a1 、an、n、d知三求一,a2=a1+ d, a3=a1+2d, a4=a1+3d, an=a1+(n-1)d,a2=a1+d, a3=a2+d = (a1+d) + d = a1+ 2d a4=a3+d = (a1+2d) +d =a1+3d,3,叠加得,等差数列的通项公式推导2(叠加),4,例 第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算。 (1)试写出由举行奥运会的年份构成的数列的通项公式 (2)2008年北京奥运会是第几届?2050年举行奥运会吗?,解:(1)由题意知,举行奥运会的年份构成的数列是一个以1896为首项,4为公差的等差数列。这个数列的通项公式为 an=1896+4(n-1) =1892+4n(nN*) (2) 假设an=2008, 由 2008=1892+4n, 得 n=29. 假设an=2050,2050=1892+4n 无正整数解 答:所求通项公式为 an= 1892+4n(nN*) , 2008年北京奥运会是第29届,2050年不举行奥运会,5,例.在等差数列an中,已知a3=10, a9=28,求a12 。,推广:等差数列an中,am,an(nm) 等差数列的通项公式一般形式: an = am + (nm)d.,解:由题意得,a1+2d=10 a1+8d=28,所以 a12=4+(12-1) 3=37,注:a12=a1+11d=a1+2d+(12-3)d=a3+(12-3)d =a1+8d+(12-9)d=a9+(12-9)d,解得: a1=4 d=3,练一练:已知a5=11, a8=5, 求等差数列an的通项公式.,6,练 习,1、填空题: (1)已知等差数列3,7,11,则a11= (2)已知等差数列11,6,1,则an = (3)已知等差数列10,8,6, ,中,-10是第( )项,43,-5n+16,11,7,练 习,2.已知等差数列an的通项公式为an=2n 1. 求首项a1和公差d.,变式引申: 如果一个数列an的通项公式an=kn+d, 其中k,b都是常数,那么这个数列一定是等差数列吗? 语言描述这种现象,想一想!,8,在等差数列,中,,为公差,若,且,求证:,证明: 设首项为,,则,例2.,等差数列的性质,9,若p=q呢?,10,练习 .在等差数列an中 (1) 已知 a6+a9+a12+a15=20,求a1+a20,(2)已知 a3+a11=10,求 a6+a7+a8,分析:由 a1+a20 =a6+ a15 = a9 +a12 及 a6+a9+a12+a15=20,可得a1+a20=10,分析: a3+a11 =a6+a8 =2a7 ,又已知 a3+a11=10, a6+a7+a8= (a3+a11)=15,例题分析,11,1.等差数列an的前三项依次为 a-6,2a -5,-3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 2,B,2. 在数列an中a1=1,an= an+1+4,则a10=,2(2a-5 )=(-3a+2) +(a-6),提示1:,提示:,d=an+1an=4,-35,3. 在等差数列an中 (1) 若a59=70,a80=112,求a101; (2) 若ap= q,aq= p ( pq ),求ap+q,d=2,a101=154,d= -1,ap+q =0,课堂练习,12,练 习,已知 ,求 的值。,解:,13,小结,掌握等差数列的通项公式,并能运用公式解决一些简单的问题,an=a1+(n1)d, 提高观察、归纳、猜想、推理等数学能力,14,1. an为等差数列 ,2. a、b、c成等差数列 ,an+1- an=d,an+1=an+d,an= a1+(n-1) d,an= kn + b,(k、b为常数),b为a、c 的等差中项,2b= a+c,等差数列的性质,15,am+an=ap+aq,上面的命题中的等式两边有 相 同 数 目 的项,否则不成立。如a1+a2=a3 成立吗?,【说明】 3.更一般的情形,an= ,d=,am+(n - m) d,4.在等差数列an中,由 m+n=p+q,注意:上面的命题的逆命题 是不一定成立 的;,5. 在等差数列an中a1+an a2+ an-1 a3+ an-2 ,=,=,=,16,17,
展开阅读全文