人教版第12章 全等三角形 测试卷(2)

上传人:青山 文档编号:1462564 上传时间:2019-10-20 格式:DOC 页数:50 大小:670.50KB
返回 下载 相关 举报
人教版第12章 全等三角形 测试卷(2)_第1页
第1页 / 共50页
人教版第12章 全等三角形 测试卷(2)_第2页
第2页 / 共50页
人教版第12章 全等三角形 测试卷(2)_第3页
第3页 / 共50页
点击查看更多>>
资源描述
第12章 全等三角形 测试卷(2)一、选择题1如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AEEF,AE=EF,现有如下结论:BE=GE;AGEECF;FCD=45;GBEECH其中,正确的结论有()A1个B2个C3个D4个2如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:AGBE;BG=4GE;SBHE=SCHD;AHB=EHD其中正确的个数是()A1B2C3D43如图,点E,F在AC上,AD=BC,DF=BE,要使ADFCBE,还需要添加的一个条件是()AA=CBD=BCADBCDDFBE二、填空题4如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF当BCE=ACF,且CE=CF时,AE+AF=5如图,在正方形ABCD中,如果AF=BE,那么AOD的度数是6如图,ABC中,C=90,CA=CB,点M在线段AB上,GMB=A,BGMG,垂足为G,MG与BC相交于点H若MH=8cm,则BG=cm7如图,以ABC的三边为边分别作等边ACD、ABE、BCF,则下列结论:EBFDFC;四边形AEFD为平行四边形;当AB=AC,BAC=120时,四边形AEFD是正方形其中正确的结论是(请写出正确结论的序号)三、解答题8如图,点C,E,F,B在同一直线上,点A,D在BC异侧,ABCD,AE=DF,A=D(1)求证:AB=CD(2)若AB=CF,B=30,求D的度数9如图,CD是ABC的中线,点E是AF的中点,CFAB(1)求证:CF=AD;(2)若ACB=90,试判断四边形BFCD的形状,并说明理由10如图,点D在AB上,点E在AC上,AB=AC,AD=AE求证:BE=CD11如图,在ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE(1)求证:EC=DA;(2)若ACCB,试判断四边形AECD的形状,并证明你的结论12【问题探究】(1)如图1,锐角ABC中分别以AB、AC为边向外作等腰ABE和等腰ACD,使AE=AB,AD=AC,BAE=CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,ABC=ACD=ADC=45,求BD的长(3)如图3,在(2)的条件下,当ACD在线段AC的左侧时,求BD的长13如图,ABC是等腰直角三角形,C=90,点D是AB的中点,点P是AB上的一个动点(点P与点A、B不重合),矩形PECF的顶点E,F分别在BC,AC上(1)探究DE与DF的关系,并给出证明;(2)当点P满足什么条件时,线段EF的长最短?(直接给出结论,不必说明理由)14如图,ABC和EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,ABEF,AB=EF求证:BC=FD15如图,已知ABC=90,D是直线AB上的点,AD=BC(1)如图1,过点A作AFAB,并截取AF=BD,连接DC、DF、CF,判断CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由16如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF求证:BE=AF17如图,在ABC中,已知AB=AC,AD平分BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC求证:DM=DN18在平行四边形ABCD中,将BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE19如图,在ABD和FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,B=E求证:ADB=FCE20如图,CA=CD,B=E,BCE=ACD求证:AB=DE21已知ABC,AB=AC,将ABC沿BC方向平移得到DEF(1)如图1,连接BD,AF,则BDAF(填“”、“”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF22如图,ABC是等腰直角三角形,ACB=90,分别以AB,AC为直角边向外作等腰直角ABD和等腰直角ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F(1)判断四边形ACGD的形状,并说明理由(2)求证:BE=CD,BECD23如图,在正方形ABCD中,G是BC上任意一点,连接AG,DEAG于E,BFDE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由24已知:如图,在ABC中,DE、DF是ABC的中位线,连接EF、AD,其交点为O求证:(1)CDEDBF;(2)OA=OD25我们把两组邻边相等的四边形叫做“筝形”如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD对角线AC,BD相交于点O,OEAB,OFCB,垂足分别是E,F求证OE=OF26如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E(1)求证:DE=AB(2)以D为圆心,DE为半径作圆弧交AD于点G若BF=FC=1,试求的长27如图,1=2,3=4,求证:AC=AD28如图,AC=DC,BC=EC,ACD=BCE求证:A=D29如图,已知D在ABC的BC边上,DEAC交AB于E,DFAB交AC于F(1)求证:AE=DF;(2)若AD平分BAC,试判断四边形AEDF的形状,并说明理由30如图,过AOB平分线上一点C作CDOB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论参考答案与试题解析一、选择题1如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AEEF,AE=EF,现有如下结论:BE=GE;AGEECF;FCD=45;GBEECH其中,正确的结论有()A1个B2个C3个D4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质【专题】压轴题【分析】根据正方形的性质得出B=DCB=90,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断;求出GAE+AEG=45,推出GAE=FEC,根据SAS推出GAECEF,即可判断;求出AGE=ECF=135,即可判断;求出FEC45,根据相似三角形的判定得出GBE和ECH不相似,即可判断【解答】解:四边形ABCD是正方形,B=DCB=90,AB=BC,AG=CE,BG=BE,由勾股定理得:BE=GE,错误;BG=BE,B=90,BGE=BEG=45,AGE=135,GAE+AEG=45,AEEF,AEF=90,BEG=45,AEG+FEC=45,GAE=FEC,在GAE和CEF中GAECEF,正确;AGE=ECF=135,FCD=13590=45,正确;BGE=BEG=45,AEG+FEC=45,FEC45,GBE和ECH不相似,错误;即正确的有2个故选B【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大2如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:AGBE;BG=4GE;SBHE=SCHD;AHB=EHD其中正确的个数是()A1B2C3D4【考点】全等三角形的判定与性质;正方形的性质【专题】压轴题【分析】首先根据正方形的性质证得BAECDE,推出ABE=DCE,再证ADHCDH,求得HAD=HCD,推出ABE=HAD;求出ABE+BAG=90;最后在AGE中根据三角形的内角和是180求得AGE=90即可得到正确根据tanABE=tanEAG=,得到AG=BG,GE=AG,于是得到BG=4EG,故正确;根据ADBC,求出SBDE=SCDE,推出SBDESDEH=SCDESDEH,即;SBHE=SCHD,故正确;由AHD=CHD,得到邻补角和对顶角相等得到AHB=EHD,故正确;【解答】证明:四边形ABCD是正方形,E是AD边上的中点,AE=DE,AB=CD,BAD=CDA=90,在BAE和CDE中,BAECDE(SAS),ABE=DCE,四边形ABCD是正方形,AD=DC,ADB=CDB=45,在ADH和CDH中,ADHCDH(SAS),HAD=HCD,ABE=DCEABE=HAD,BAD=BAH+DAH=90,ABE+BAH=90,AGB=18090=90,AGBE,故正确;tanABE=tanEAG=,AG=BG,GE=AG,BG=4EG,故正确;ADBC,SBDE=SCDE,SBDESDEH=SCDESDEH,即;SBHE=SCHD,故正确;ADHCDH,AHD=CHD,AHB=CHB,BHC=DHE,AHB=EHD,故正确;故选:D【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:四边相等,两两垂直; 四个内角相等,都是90度; 对角线相等,相互垂直,且平分一组对角3如图,点E,F在AC上,AD=BC,DF=BE,要使ADFCBE,还需要添加的一个条件是()AA=CBD=BCADBCDDFBE【考点】全等三角形的判定与性质【分析】利用全等三角形的判定与性质进而得出当D=B时,ADFCBE【解答】解:当D=B时,在ADF和CBE中,ADFCBE(SAS),故选:B【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键二、填空题4如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF当BCE=ACF,且CE=CF时,AE+AF=【考点】全等三角形的判定与性质;矩形的性质;解直角三角形【专题】压轴题【分析】过点F作FGAC于点G,证明BCEGCF,得到CG=CB=2,根据勾股定理得AC=4,所以AG=42,易证AGFCBA,求出AF、FG,再求出AE,得出AE+AF的值【解答】解:过点F作FGAC于点G,如图所示,在BCE和GCF中,BCEGCF(AAS),CG=BC=2,AC=4,AG=42,AGFCBA,AF=,FG=,AE=2=,AE+AF=+=故答案为:【点评】本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中5如图,在正方形ABCD中,如果AF=BE,那么AOD的度数是90【考点】全等三角形的判定与性质;正方形的性质【专题】压轴题【分析】根据全等三角形的判定与性质,可得ODA与BAE的关系,根据余角的性质,可得ODA与OAD的关系,根据直角三角形的判定,可得答案【解答】解:由ABCD是正方形,得AD=AB,DAB=B=90在ABE和DAF中,ABEDAF,BAE=ADFBAE+EAD=90,OAD+ADO=90,AOD=90,故答案为:90【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定6如图,ABC中,C=90,CA=CB,点M在线段AB上,GMB=A,BGMG,垂足为G,MG与BC相交于点H若MH=8cm,则BG=4cm【考点】全等三角形的判定与性质;等腰直角三角形【分析】如图,作MDBC于D,延长DE交BG的延长线于E,构建等腰BDM、全等三角形BED和MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4【解答】解:如图,作MDBC于D,延长MD交BG的延长线于E,ABC中,C=90,CA=CB,ABC=A=45,GMB=A,GMB=A=22.5,BGMG,BGM=90,GBM=9022.5=67.5,GBH=EBMABC=22.5MDAC,BMD=A=45,BDM为等腰直角三角形BD=DM,而GBH=22.5,GM平分BMD,而BGMG,BG=EG,即BG=BE,MHD+HMD=E+HMD=90,MHD=E,GBD=90E,HMD=90E,GBD=HMD,在BED和MHD中,BEDMHD(AAS),BE=MH,BG=MH=4故答案是:4【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等也考查了等腰直角三角形的性质7如图,以ABC的三边为边分别作等边ACD、ABE、BCF,则下列结论:EBFDFC;四边形AEFD为平行四边形;当AB=AC,BAC=120时,四边形AEFD是正方形其中正确的结论是(请写出正确结论的序号)【考点】全等三角形的判定与性质;等边三角形的性质;平行四边形的判定;正方形的判定【专题】压轴题【分析】由三角形ABE与三角形BCF都为等边三角形,利用等边三角形的性质得到两对边相等,ABE=CBF=60,利用等式的性质得到夹角相等,利用SAS得到三角形EBF与三角形DFC全等,利用全等三角形对应边相等得到EF=AC,再由三角形ADC为等边三角形得到三边相等,等量代换得到EF=AD,AE=DF,利用对边相等的四边形为平行四边形得到AEFD为平行四边形,若AB=AC,BAC=120,只能得到AEFD为菱形,不能为正方形,即可得到正确的选项【解答】解:ABE、BCF为等边三角形,AB=BE=AE,BC=CF=FB,ABE=CBF=60,ABEABF=FBCABF,即CBA=FBE,在ABC和EBF中,ABCEBF(SAS),EF=AC,又ADC为等边三角形,CD=AD=AC,EF=AD=DC,同理可得ABCDFC,DF=AB=AE=DF,四边形AEFD是平行四边形,选项正确;FEA=ADF,FEA+AEB=ADF+ADC,即FEB=CDF,在FEB和CDF中,FEBCDF(SAS),选项正确;若AB=AC,BAC=120,则有AE=AD,EAD=120,此时AEFD为菱形,选项错误,故答案为:【点评】此题考查了全等三角形的判定与性质,等边三角形的性质,平行四边形的判定,以及正方形的判定,熟练掌握全等三角形的判定与性质是解本题的关键三、解答题8如图,点C,E,F,B在同一直线上,点A,D在BC异侧,ABCD,AE=DF,A=D(1)求证:AB=CD(2)若AB=CF,B=30,求D的度数【考点】全等三角形的判定与性质【分析】(1)易证得ABECDF,即可得AB=CD;(2)易证得ABECDF,即可得AB=CD,又由AB=CF,B=30,即可证得ABE是等腰三角形,解答即可【解答】证明:(1)ABCD,B=C,在ABE和CDF中,ABECDF(AAS),AB=CD;(2)ABECDF,AB=CD,BE=CF,AB=CF,B=30,AB=BE,ABE是等腰三角形,D=【点评】此题考查全等三角形问题,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答9如图,CD是ABC的中线,点E是AF的中点,CFAB(1)求证:CF=AD;(2)若ACB=90,试判断四边形BFCD的形状,并说明理由【考点】全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定【分析】(1)根据中点的性质,可得AE与EF的关系,根据平行的性质,可得内错角相等,根据全等三角形的判定与性质,可得CF与DA的关系,根据等量代换,可得答案;(2)根据一组对边平行且相等的四边形是平行四边形,可得四边形BFCD的形状,根据直角三角形的性质,可得BD=CD,根据菱形的判定,可得答案;【解答】(1)证明AE是DC边上的中线,AE=FE,CFAB,ADE=CFE,DAE=CFE在ADE和FCE中,ADEFCE(AAS),CF=DA(2)CD是ABC的中线,D是AB的中点,AD=BD,ADEFCE,AD=CF,BD=CF,ABCF,BDCF,四边形BFCD是平行四边形,ACB=90,ACB是直角三角形,CD=AB,BD=AB,BD=CD,四边形BFCD是菱形【点评】本题考查了四边形综合题,(1)利用了全等三角形的判定与性质,(2)利用了直角三角形的性质,菱形的判定分析10如图,点D在AB上,点E在AC上,AB=AC,AD=AE求证:BE=CD【考点】全等三角形的判定与性质【专题】证明题【分析】利用SAS证得ADCAEB后即可证得结论【解答】解:在ADC和AEB中,ADCAEB,BE=CD【点评】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定的方法,难度不大11如图,在ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE(1)求证:EC=DA;(2)若ACCB,试判断四边形AECD的形状,并证明你的结论【考点】全等三角形的判定与性质;菱形的判定【专题】证明题【分析】(1)根据平行线的性质得出FEC=DBF,ECF=BDF,F是CD的中点,得出FD=CF,再利用AAS证明FEC与DBF全等,进一步证明即可;(2)利用直角三角形的性质:斜边上的中线等于斜边的,得出CD=DA,进一步得出结论即可【解答】(1)证明:ECAB,FEC=DBF,ECF=BDF,F是CD的中点,FD=CF,在FEC与DBF中,FECDBF,EC=BD,又CD是AB边上的中线,BD=AD,EC=AD(2)四边形AECD是菱形证明:EC=AD,ECAD,四边形AECD是平行四边形,ACCB,CD是AB边上的中线,CD=AD=BD,四边形AECD是菱形【点评】此题考查三角形全等的判定与性质,平行四边形的判定以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键12【问题探究】(1)如图1,锐角ABC中分别以AB、AC为边向外作等腰ABE和等腰ACD,使AE=AB,AD=AC,BAE=CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,ABC=ACD=ADC=45,求BD的长(3)如图3,在(2)的条件下,当ACD在线段AC的左侧时,求BD的长【考点】全等三角形的判定与性质;等腰三角形的性质【专题】压轴题【分析】(1)首先根据等式的性质证明EAC=BAD,则根据SAS即可证明EACBAD,根据全等三角形的性质即可证明;(2)在ABC的外部,以A为直角顶点作等腰直角BAE,使BAE=90,AE=AB,连接EA、EB、EC,证明EACBAD,证明BD=CE,然后在直角三角形BCE中利用勾股定理即可求解;(3)在线段AC的右侧过点A作AEAB于点A,交BC的延长线于点E,证明EACBAD,证明BD=CE,即可求解【解答】解:(1)BD=CE理由是:BAE=CAD,BAE+BAC=CAD+BAC,即EAC=BAD,在EAC和BAD中,EACBAD,BD=CE;(2)如图2,在ABC的外部,以A为直角顶点作等腰直角BAE,使BAE=90,AE=AB,连接EA、EB、ECACD=ADC=45,AC=AD,CAD=90,BAE+BAC=CAD+BAC,即EAC=BAD,在EAC和BAD中,EACBAD,BD=CEAE=AB=7,BE=7,ABE=AEB=45,又ABC=45,ABC+ABE=45+45=90,EC=,BD=CE=(3)如图3,在线段AC的右侧过点A作AEAB于点A,交BC的延长线于点E,连接BEAEAB,BAE=90,又ABC=45,E=ABC=45,AE=AB=7,BE=7,又ACD=ADC=45,BAE=DAC=90,BAEBAC=DACBAC,即EAC=BAD,在EAC和BAD中,EACBAD,BD=CE,BC=3,BD=CE=(73)cm【点评】本题考查了全等三角形的判定与性质,正确理解三个题目之间的联系,构造(1)中的全等三角形是解决本题的关键13如图,ABC是等腰直角三角形,C=90,点D是AB的中点,点P是AB上的一个动点(点P与点A、B不重合),矩形PECF的顶点E,F分别在BC,AC上(1)探究DE与DF的关系,并给出证明;(2)当点P满足什么条件时,线段EF的长最短?(直接给出结论,不必说明理由)【考点】全等三角形的判定与性质;等腰直角三角形;矩形的性质【分析】(1)连接CD,首先根据ABC是等腰直角三角形,C=90,点D是AB的中点得到CD=AD,CDAD,然后根据四边形PECF是矩形得到APE是等腰直角三角形,从而得到DCEDAF,证得DE=DF,DEDF;(2)根据DE=DF,DEDF,得到EF=DE=DF,从而得到当DE和DF同时最短时,EF最短得到此时点P与点D重合线段EF最短【解答】解:(1)DE=DF,DEDF,证明:连接CD,ABC是等腰直角三角形,C=90,点D是AB的中点,CD=AD,CDAD,四边形PECF是矩形,CE=FP,FPCB,APF是等腰直角三角形,AF=PF=EC,DCE=A=45,DCEDAF,DE=DF,ADF=CDE,CDA=90,EDF=90,DE=DF,DEDF;(2)DE=DF,DEDF,EF=DE=DF,当DE和DF同时最短时,EF最短,当DFAC,DEAB时,二者最短,此时点P与点D重合,点P与点D重合时,线段EF最短【点评】本题考查了全等三角形的判定与性质、等腰直角三角形及矩形的性质,解题的关键是能够证得两个三角形全等,难度不大14如图,ABC和EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,ABEF,AB=EF求证:BC=FD【考点】全等三角形的判定与性质【专题】证明题【分析】根据已知条件得出ACBDEF,即可得出BC=DF【解答】证明:ABEF,A=E,在ABC和EFD中ABCEFD(SAS)BC=FD【点评】本题考查了平行线的性质和三角形全等的判定方法,难度适中15如图,已知ABC=90,D是直线AB上的点,AD=BC(1)如图1,过点A作AFAB,并截取AF=BD,连接DC、DF、CF,判断CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由【考点】全等三角形的判定与性质【专题】压轴题【分析】(1)利用SAS证明AFD和BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AFAB于A,使AF=BD,连结DF,CF,利用SAS证明AFD和BDC全等,再利用全等三角形的性质得出FD=DC,FDC=90,即可得出FCD=APD=45【解答】解:(1)CDF是等腰直角三角形,理由如下:AFAD,ABC=90,FAD=DBC,在FAD与DBC中,FADDBC(SAS),FD=DC,CDF是等腰三角形,FADDBC,FDA=DCB,BDC+DCB=90,BDC+FDA=90,CDF是等腰直角三角形;(2)作AFAB于A,使AF=BD,连结DF,CF,如图,AFAD,ABC=90,FAD=DBC,在FAD与DBC中,FADDBC(SAS),FD=DC,CDF是等腰三角形,FADDBC,FDA=DCB,BDC+DCB=90,BDC+FDA=90,CDF是等腰直角三角形,FCD=45,AFCE,且AF=CE,四边形AFCE是平行四边形,AECF,APD=FCD=45【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用解答时证明三角形全等是关键16如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF求证:BE=AF【考点】全等三角形的判定与性质;正方形的性质【专题】证明题【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得BAE=D=90,然后利用“边角边”证明ABE和ADF全等,根据全等三角形对应边相等证明即可【解答】证明:在正方形ABCD中,AB=AD,BAE=D=90,在ABE和ADF中,ABEADF(SAS),BE=AF【点评】本题考查了正方形的性质,全等三角形的判定与性质,以及垂直的定义,求出两三角形全等,从而得到BE=AF是解题的关键17如图,在ABC中,已知AB=AC,AD平分BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC求证:DM=DN【考点】全等三角形的判定与性质【专题】证明题【分析】首先根据等腰三角形的性质得到AD是顶角的平分线,再利用全等三角形进行证明即可【解答】证明:AM=2MB,AN=2NC,AB=AC,AM=AN,AB=AC,AD平分BAC,MAD=NAD,在AMD与AND中,AMDAND(SAS),DM=DN【点评】本题考查了全等三角形的判定和性质,关键是根据等腰三角形的性质进行证明18在平行四边形ABCD中,将BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE【考点】全等三角形的判定与性质;平行四边形的性质;翻折变换(折叠问题)【专题】证明题【分析】由在平行四边形ABCD中,将BCD沿BD对折,使点C落在E处,即可求得DBE=ADB,得出OB=OD,再由A=C,证明三角形全等,利用全等三角形的性质证明即可【解答】证明:平行四边形ABCD中,将BCD沿BD对折,使点C落在E处,可得DBE=ADB,A=C,OB=OD,在AOB和EOD中,AOBEOD(AAS),OA=OE【点评】此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用19如图,在ABD和FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,B=E求证:ADB=FCE【考点】全等三角形的判定与性质【专题】证明题【分析】根据等式的性质得出BD=CE,再利用SAS得出:ABD与FEC全等,进而得出ADB=FCE【解答】证明:BC=DE,BC+CD=DE+CD,即BD=CE,在ABD与FEC中,ABDFEC(SAS),ADB=FCE【点评】此题考查全等三角形的判定和性质,关键是根据等式的性质得出BD=CE,再利用全等三角形的判定和性质解答20如图,CA=CD,B=E,BCE=ACD求证:AB=DE【考点】全等三角形的判定与性质【专题】证明题【分析】如图,首先证明ACB=DCE,这是解决问题的关键性结论;然后运用AAS公理证明ABCDEC,即可解决问题【解答】解:如图,BCE=ACD,ACB=DCE;在ABC与DEC中,ABCDEC(AAS),AB=DE【点评】该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固掌握全等三角形的判定方法,这是灵活运用、解题的基础和关键21已知ABC,AB=AC,将ABC沿BC方向平移得到DEF(1)如图1,连接BD,AF,则BD=AF(填“”、“”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF【考点】全等三角形的判定与性质;等腰三角形的性质;平移的性质【专题】证明题【分析】(1)根据等腰三角形的性质,可得ABC与ACB的关系,根据平移的性质,可得AC与DF的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案【解答】(1)解:由AB=AC,得ABC=ACB由ABC沿BC方向平移得到DEF,得DF=AC,DFE=ACB在ABF和DFB中,ABFDFB(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:,MNBF,AMGABC,DHNDEF,=,=,MG=HN,MB=NF在BMH和FNG中,BMHFNG(SAS),BH=FG【点评】本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质22如图,ABC是等腰直角三角形,ACB=90,分别以AB,AC为直角边向外作等腰直角ABD和等腰直角ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F(1)判断四边形ACGD的形状,并说明理由(2)求证:BE=CD,BECD【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的判定【专题】证明题【分析】(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由CGB=45,ADB=45得ADCG,由CBD+ACB=180,得ACBD,得出四边形ACGD为平行四边形;(2)利用全等三角形的判定证得DACBAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得BCECAD,易得CBE=ACD,由ACB=90,易得CFB=90,得出结论【解答】(1)解:ABC是等腰直角三角形,ACB=90,AB=BC,ABD和ACE均为等腰直角三角形,BD=BC=2BC,G为BD的中点,BG=BD=BC,CBG为等腰直角三角形,CGB=45,ADB=45,ADCG,ABD=45,ABC=45CBD=90,ACB=90,CBD+ACB=180,ACBD,四边形ACGD为平行四边形;(2)证明:EAB=EAC+CAB=90+45=135,CAD=DAB+BAC=90+45=135,EAB=CAD,在DAC与BAE中,DACBAE,BE=CD;EAC=BCA=90,EA=AC=BC,四边形ABCE为平行四边形,CE=AB=AD,在BCE与CAD中,BCECAD,CBE=ACD,ACD+BCD=90,CBE+BCD=90,CFB=90,即BECD【点评】本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键23如图,在正方形ABCD中,G是BC上任意一点,连接AG,DEAG于E,BFDE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由【考点】全等三角形的判定与性质;正方形的性质【分析】根据正方形的性质,可得AB=AD,DAB=ABC=90,根据余角的性质,可得ADE=BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案【解答】解:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:四边形ABCD是正方形,AB=AD,DAB=ABC=90DEAG于E,BFDE交AG于F,AED=DEF=AFB=90,ADE+DAE=90,DAE+BAF=90,ADE=BAF在ABF和DAE中,ABFDAE (AAS),BF=AEAF=AE+EF,AF=BF+EF【点评】本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质,等量代换24已知:如图,在ABC中,DE、DF是ABC的中位线,连接EF、AD,其交点为O求证:(1)CDEDBF;(2)OA=OD【考点】全等三角形的判定与性质;三角形中位线定理【专题】证明题【分析】(1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案【解答】证明:(1)DE、DF是ABC的中位线,DF=CE,DFCE,DB=DCDFCE,C=BDF在CDE和DBF中,CDEDBF (SAS);(2)DE、DF是ABC的中位线,DF=AE,DFAE,四边形DEAF是平行四边形,EF与AD交于O点,AO=OD【点评】本题考查了全等三角形的判定与性质,(1)利用了三角形中位线的性质,全等三角形的判定;(2)利用了三角形中位线的性质,平行四边的性的判定与性质25我们把两组邻边相等的四边形叫做“筝形”如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD对角线AC,BD相交于点O,OEAB,OFCB,垂足分别是E,F求证OE=OF【考点】全等三角形的判定与性质【专题】证明题;新定义【分析】欲证明OE=OF,只需推知BD平分ABC,所以通过全等三角形ABDCBD(SSS)的对应角相等得到ABD=CBD,问题就迎刃而解了【解答】证明:在ABD和CBD中,ABDCBD(SSS),ABD=CBD,BD平分ABC又OEAB,OFCB,OE=OF【点评】本题考查了全等三角形的判定与性质在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形26如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E(1)求证:DE=AB(2)以D为圆心,DE为半径作圆弧交AD于点G若BF=FC=1,试求的长【考点】全等三角形的判定与性质;含30度角的直角三角形;矩形的性质;弧长的计算【分析】(1)由矩形的性质得出B=C=90,AB=BC=AD=DC,ADBC,得出EAD=AFB,由AAS证明ADEFAB,得出对应边相等即可;(2)连接DF,先证明DCFABF,得出DF=AF,再证明ADF是等边三角形,得出DAE=60,ADE=30,由AE=BF=1,根据三角函数得出DE,由弧长公式即可求出的长【解答】(1)证明:四边形ABCD是矩形,B=C=90,AB=BC=AD=DC,ADBC,EAD=AFB,DEAF,AED=90,在ADE和FAB中,ADEFAB(AAS),DE=AB;(2)解:连接DF,如图所示:在DCF和ABF中,DCFABF(SAS),DF=AF,AF=AD,DF=AF=AD,ADF是等边三角形,DAE=60,DEAF,AED=90,ADE=30,ADEFAB,AE=BF=1,DE=AE=,的长=【点评】本题考查了矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、三角函数以及弧长公式;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键27如图,1=2,3=4,求证:AC=AD【考点】全等三角形的判定与性质【专题】证明题【分析】先证出ABC=ABD,再由ASA证明ABCABD,得出对应边相等即可【解答】证明:3=4,ABC=ABD,在ABC和ABD中,ABCABD(ASA),AC=AD【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键28如图,AC=DC,BC=EC,ACD=BCE求证:A=D【考点】全等三角形的判定与性质【专题】证明题【分析】先证出ACB=DCE,再由SAS证明ABCDEC,得出对应角相等即可【解答】证明:ACD=BCE,ACB=DCE,在ABC和DEC中,ABCDEC(SAS),A=D【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键29如图,已知点D在ABC的BC边上,DEAC交AB于E,DFAB交AC于F(1)求证:AE=DF;(2)若AD平分BAC,试判断四边形AEDF的形状,并说明理由【考点】全等三角形的判定与性质;菱形的判定【专题】证明题【分析】(1)利用AAS推出ADEDAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是,再利用AD是角平分线,结合AEDF,易证DAF=FDA,利用等角对等边,可得AE=DF,从而可证AEDF实菱形【解答】证明:(1)DEAC,ADE=DAF,同理DAE=FDA,AD=DA,ADEDAF,AE=DF;(2)若AD平分BAC,四边形AEDF是菱形,DEAC,DFAB,四边形AEDF是平行四边形,DAF=FDAAF=DF平行四边形AEDF为菱形【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况30如图,过AOB平分线上一点C作CDOB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON首先根据OC是AOB的平分线,CDOB,判断出DOC=DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CDOB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ONDM由(1),可得OD=DC=CMDM,再根据CM=ON,推得OD=ONDM即可【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON证明:如图1,OC是AOB的平分线,DOC=C0B,又CDOB,DCO=C0B,DOC=DC0,OD=CD=DM+CM,E是线段OC的中点,CE=OE,CDOB,CM=ON,又OD=DM+CM,OD=DM+ON(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ONDM证明:如图2,由(1),可得OD=DC=CMDM,又CM=ON,OD=DC=CMDM=ONDM,即OD=ONDM【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:定理1:两条平行线被第三条直线所截,同位角相等简单说成:两直线平行,同位角相等定理2:两条平行线被地三条直线所截,同旁内角互补简单说成:两直线平行,同旁内角互补定理3:两条平行线被第三条直线所截,内错角相等简单说成:两直线平行,内错角相等(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:等腰三角形的两腰相等等腰三角形的两个底角相等等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合第50页(共50页)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!