4.4 解直角三角形的应用 第2课时

上传人:青山 文档编号:1460888 上传时间:2019-10-20 格式:DOC 页数:5 大小:206KB
返回 下载 相关 举报
4.4 解直角三角形的应用 第2课时_第1页
第1页 / 共5页
4.4 解直角三角形的应用 第2课时_第2页
第2页 / 共5页
4.4 解直角三角形的应用 第2课时_第3页
第3页 / 共5页
点击查看更多>>
资源描述
4.4 解直角三角形的应用第2课时教学目标【知识与能力】1了解测量中坡度、坡角的概念;2掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题【过程与方法】通过对例题的学习,使学生能够利用所学知识解决实际问题【情感态度价值观】进一步培养学生把实际问题转化为数学问题的能力教学重难点【教学重点】能利用解直角三角形的知识,解决与坡度、与弧长有关的实际问题【教学难点】能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题课前准备无教学过程一、情景导入,初步认知如图所示,斜坡AB和斜坡A1B1,哪一个倾斜程度比较大?显然,斜坡A1B1的倾斜程度比较大,说明A1A.从图形可以看出,即tanA1tanA.【教学说明】通过实际问题的引入,提高学生学习的兴趣二、思考探究,获取新知1坡度的概念,坡度与坡角的关系如上图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比),记作i,即i,坡度通常用lm的形式,例如上图中的12的形式坡面与水平面的夹角叫作坡角,记作.从三角函数的概念可以知道,坡度与坡角的关系是itanB,显然,坡度越大,坡角越大,坡面就越陡2如图,一山坡的坡度为i12,小刚从山脚A出发,沿山坡向上走了240米到达点C,这座山坡的坡角是多少度?小刚上升了多少米?(角度精确到0.01,长度精确到0.1米)3如图,一艘船以40km/h的速度向正东航行,在A处测得灯塔C在北偏东60方向上,继续航行1h到达B处,这时测得灯塔C在北偏东30方向上,已知在灯塔C的四周30km内有暗礁问这艘船继续向东航行是否安全?【教学说明】教师引导学生分析题目中的已知条件分别代表的是什么,将图形中的信息转化为图形中的已知条件,再分析图形求出问题学生独立完成三、运用新知,深化理解1如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24,求斜坡上相邻两树的坡面距离是多少(精确到0.1m)分析:引导学生将实际问题转化为数学问题画出图形解:已知:在RtABC中,C90,AC5.5,A24,求AB.在RtABC中,cosA,AB6.0(米)答:斜坡上相邻两树间的坡面距离约是6.0米2同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i13,斜坡CD的坡度i12.5,求斜坡AB的坡面角,坝底宽AD和斜坡AB的长(精确到0.1m)解:作BEAD,CFAD,在RtABE和RtCDF中,AE3BE32369(m)FD2.5CF2.52357.5(m)ADAEEFFD69657.5132.5(m)因为斜坡AB的坡度itan0.3333,所以1826.sin,AB72.7(m)答:斜坡AB的坡角约为1826,坝底宽AD为132.5米,斜坡AB的长约为72.7米3庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发如图,已知小山北坡的坡度i1,山坡长为240米,南坡的坡角是45.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)解:过点A作ADBC于点D,在RtADC中,由i1得tanC,C30.ADAC240120(米)在RtABD中,B45,ABAD120(米)120(24024)1201012(米/分钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A.4某公园有一滑梯,横截面如图所示,AB表示楼梯,BC表示平台,CD表示滑道若点E,F均在线段AD上,四边形BCEF是矩形,且sinBAF,BF3米,BC1米,CD6米求:(1)D的度数;(2)线段AE的长解:(1)四边形BCEF是矩形,BFECEF90,CEBF,BCFE,BFACED90,CEBF,BF3米,CE3米,CD6米,CED90,D30.(2)sinBAF,BF3米,AB米,AF米,AE米5日本福岛发生核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9方向,求此时海检船所在B处与城市P的距离(参考数据:sin36.9,tan36.9,sin67.5,tan67.5)分析:过点P作PCAB,构造直角三角形,设PCx海里,用含有x的式子表示AC,BC的值,从而求出x的值,再根据三角函数值求出BP的值即可解答解:过点P作PCAB,垂足为C,设PCx海里在RtAPC中,tanA,AC在RtPCB中,tanB,BC从上午9时到下午2时要经过五个小时,ACBCAB215,215,解得x60.sinB,PB60100(海里)海检船所在B处与城市P的距离为100海里【教学说明】通过练习,巩固本节课所学内容四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结教师作以补充课后作业布置作业:教材“习题4.1”中第1、6、7题教学反思通过本节课的学习,使学生知道坡度、坡角的概念,能利用解直角三角形的知识解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决5
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!