材料力学与弹性力学的研究差异论文.doc

上传人:仙*** 文档编号:1345893 上传时间:2019-10-15 格式:DOC 页数:5 大小:15.25KB
返回 下载 相关 举报
材料力学与弹性力学的研究差异论文.doc_第1页
第1页 / 共5页
材料力学与弹性力学的研究差异论文.doc_第2页
第2页 / 共5页
亲,该文档总共5页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
毕业论文/毕业论文范文 材料力学与弹性力学的研究差异论文 材料力学(mechanics of materials)和弹性力学(theory of elasticity)都是力学的重要分支学科,尽管他们都是研究和分析各种结构物在弹性阶段的应力和位移,但在研究对象和方法上仍然具有很大的差异。材料力学主要研究物体受理后发生的变形、由于变形而产生的内力以及物体由此而产生的失效和控制失效准则1。其主要的研究对象是杆状构件,即长度远大于高度和宽度的构件及其在拉压、剪切、弯曲、扭转作用下的应力和位移。材料力学除了从静力学、几何学、物理学三方面进行分析之外,通过试验现象的观察和分析,忽略次要因素,保留主要因素,引用一些关于构件的形变状态或应力分布的假定,大大简化了数学推演。虽然解答只是近似的,但是可以满足工程上的精度要求。弹性力学作为固体力学的一个分支,研究可变性固体在外部因素如力、温度变化、约束变动等作用下产生的应力、应变和位移2。其研究对象既可是非杆状结构,如板和壳以及挡土墙、堤坝、地基等实体结构,亦可是杆状构件,并且其不引用任何假定,解答较材料力学更为精确,常常用来校核材料力学里得出的近似解答。材料力学与弹性力学同样作为变形体力学的分支,在解决具体问题使,需要将实际工程构件的研究对象抽象为理想模型。作为理想模型,在建立其已知量和未知量的推导关系时,要满足如下基本假设:连续性假设、均匀性假设、各向同性假设、小变形假设、完全弹性假设。下面*将就在一下具体问题的解决中,探讨材料力学和弹性力学在研究方法上的差异。1.直梁在横向荷载作用下的弯曲研究1)在纯弯曲梁中,对于平截面假定的验证材料力学在研究梁的弯曲应力时,采用纯弯曲段分析。通过观察对比梁变形前后表面横向线和纵向线的几何变形,推测梁内部横截面在变形后仍为平面。在弹性力学中,证明了其横截面是否为平面的过程如下:假定平面应力情况,已通过多项式解答取=ay3,求得纯弯曲矩形梁的应力分量,将应力分量代入物理方程、几何方程,并积分变换得位移分量的表达式:u=meixy+f1(y)=-m2eiy2+f2(x)通过数学变换求得位移分量为:u=meixy-y+u0=-m2eiy2-m2eix2+y+0其中、u0、0为刚体位移由上式可得,铅直线段的转角为:=uy=meix-在同一个截面上,x是常量,因而也是常量。可见,同一横截面上的各铅直线段转角相等,即横截面保持平面。2)对于截面弯曲应力的修正与分析在材料力学中,根据平面假设和单向受力状态导出了应力公式。但此公式仅限于纯弯曲梁,当梁受横向外力作用时,梁发生横力弯曲,此时变形后已不再是平面,单向受力状态也不成立。针对此问题,材料力学一般做简化处理。对于跨长与横截面高度之比大于5的梁,用纯弯曲正应力公式=miy进行计算,结果虽然有误差,但足以满足工程上的精度要求,近似用该公式得到的结果作为横力弯曲的正应力计算公式。而在弹性力学中,采用半逆解法严密的推导了各应力分量。以均布荷载下的简支梁为例,假设应力分量形式y=f(y),由应力函数与应力分量的关系导出应力函数,并代入相容方程得到各应力分量的表达式。考虑主要边界与小边界后,得截面上的应力分量为:x=miy+qyh(4y2h2-35)y=-q2(1+yh)(1-2yh)2xy=fsbi由上式可见,在弯应力x的表达式中,第一项是主要项,和材料力学中的解答相同,第二项是弹性力学提出的修正项。对于通常的浅梁(跨高比大于5),修正项很小,可以忽略不计,对于较深的梁,则必须考虑修正项。应力分量y是梁各层纤维之间的挤压应力,它的最大绝对值是q,发生在梁顶。在材料力学中,由于单向应力假设,认为纵向线之间互不挤压,一般不考虑该应力分量。切应力xy的表达式和材料力学完全一样。从表达式中可以看到,当lh时,x最大,xy次之,y最小,且x中的qyh(4y2h2-35)是高阶小量。因此进一步说明了,材料力学的公式可以近似满足工程梁的计算精度,而弹性力学推导相对复杂因此材料力学具有较强的实用性。2.切应力互等定理在材料力学中,以圆杆的扭转为背景,考虑了一个特殊的简单应力状态,并加以推理得到了切应力互等定理。在沿杆轴线方向取微段dx,垂直于径向的平面截出一无限小的单元体,则很容易得出内外表面无应力,只在左右两个面上有切应力。则该单元体将会转动不能平衡,所以推定在上下两个纵截面上必定存在着。由于面积很小,近似认为切应力在各面上均匀分布。由平衡方程m=0得到(dydz)dx=(dxdz)dy从而得到:=而在弹性力学中,则从最普遍的情况出发,不作任何假设。取微小的平行六面体,根据平衡条件导出应力分量之间的关系。由对中心点的力矩平衡方程,得到:(xy+xyxdx)dy1dx2+yxdy1dx2-(xy+xyydy)dx1dy2+yxdx1dy2=0将上式两边同除dxdy,合并同类项,并命dx dy趋于零,得到xy=yx 从而验证了切应力互等定理。从切应力互等定理的导出我们可以发现,材料力学在推导过程中运用了一些推理和假设,而弹性力学的推导过程是比较严密和精确的。*l
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!