《分子扩散基本定律》PPT课件.ppt

上传人:tia****nde 文档编号:12944779 上传时间:2020-06-04 格式:PPT 页数:30 大小:246KB
返回 下载 相关 举报
《分子扩散基本定律》PPT课件.ppt_第1页
第1页 / 共30页
《分子扩散基本定律》PPT课件.ppt_第2页
第2页 / 共30页
《分子扩散基本定律》PPT课件.ppt_第3页
第3页 / 共30页
点击查看更多>>
资源描述
硅酸盐工业热工基础,第三章传质原理,第1讲分子扩散基本定律,学习要点,1、几个概念及其表示方法,浓度,质量浓度,质量分数,物质的量浓度,摩尔分数,速度,以静止坐标为参考基准,以平均速度为参考标准,传质通量,相对于静止坐标系,相对于平均速度,2、斐克定律,3、气体、液体和固体中的分子扩散系数,概述,传质物质由高浓度向低浓度方向转移的过程称为质量传递,简称传质。,图3-1-1(a)同种物质的传质(b)混合物质的传质,(a),(b),传质发生的条件单一物质或混合气体内部存在浓度差。浓度差是传质的推动力。,B,A,传热发生的条件物质内部存在温度差。温度差是传热的推动力。,概述,均匀混合物的传质,概述,热扩散:由温度差引起的传质。,压力扩散:由压力差引起的传质。,浓度差是传质发生的内在因素,而温度差和压力差是传质发生的外在因素。一般来说,只有当温度差或压力差很大时,热扩散和压力扩散才会对传质产生明显的影响,而对一般的工程而言,热扩散和压力扩散的影响都忽略不计,只考虑等温、均压下的浓度扩散。,传质的基本方式,概述,分子扩散:由物质的分子、原子及自由电子等微观粒子的随机运动引起的扩散。,紊流扩散:在流体中由于紊流脉动作用引起的扩散。,分子扩散发生在静止流体或在垂直于浓度梯度方向上作层流运动的流体以及固体中的传质。而在实际工程问题中,除了一定存在的分子扩散外,大多数都存在紊流扩散,所以通常是分子扩散和紊流扩散的联合作用,这种联合扩散称为对流传质。,3-1分子扩散基本定律,定义:在多元混合物中,各组分在混合物中所占分量的多少。表示法:质量浓度和物质的量浓度。,一、基本概念,质量浓度:在单位体积混合物中某一组分i的质量称为该组分的质量浓度,用i表示,单位为Kg/m3。,1、浓度,由n种组分构成的混合物的总质量浓度为:,(3-1),3-1分子扩散基本定律,物质的量浓度:在单位体积混合物中某一组分i的物质的量称为该组分的物质的量浓度,用Ci表示,单位为kmol/m3。,由n种组分构成的混合物的总物质的量浓度为:,(3-2),(3-3),若已知混合物的质量浓度和分子量M,则混合物的物质的量浓度可以表示为:,3-1分子扩散基本定律,应用理想气体状态方程,物质的量浓度可表示为:,(3-4),(3-5),式中,Pi、P为组分i的分压力和混合气体的总压力;ni、n为组分i的物质的量和混合气体总的物质的量;V为混合气体的体积;R为通用气体常数;T为混合气体的绝对温度。,3-1分子扩散基本定律,质量百分数:混合物中某一组分i的质量浓度与混合物总质量浓度之比,用wi表示。,(3-6),根据质量分数的定义,则,成分表示法,质量百分数和摩尔百分数,(3-7),3-1分子扩散基本定律,摩尔百分数:混合物中某一组分i的物质的量浓度与混合物总物质的量浓度之比,对于混合气体,i组分的摩尔百分数用yi表示;对于液体或固体,i组分的摩尔百分数用xi表示。,(3-8),根据摩尔分数的定义,则,(3-9),对于液体或固体,对于气体,(3-10),3-1分子扩散基本定律,式中,Mi为组分i的分子量。,质量百分数与摩尔百分数的关系,根据质量分数和摩尔分数的定义及质量浓度和摩尔浓度的关系,例3-1计算温度为25C,压力为105Pa的干空气中O2和N2的质量分数及干空气的平均分子量。,取1Kmol干空气作为基准,则其中有,解:,O2:10.21=0.21kmol或0.2132=6.72kgN2:10.79=0.79kmol或0.7928=22.12kg,故1Kmol干空气的质量为6.72+22.12=28.84kg,则O2和N2的质量百分数分别为,1Kmol干空气的质量为28.84kg,故干空气的平均分子量为28.84。,3-1分子扩散基本定律,质量平均速度,一、基本概念,摩尔平均速度,2、扩散速度,(3-11),(3-12),式中,ui为组分i相对于固定坐标的绝对速度。,组分i相对于质量平均速度或摩尔平均速度的速度称为扩散速度。ui-u为组分i相对于质量平均速度的扩散速度;ui-uM为组分i相对于摩尔平均速度的扩散速度。,3-1分子扩散基本定律,一、基本概念,定义:单位时间内通过垂直于浓度梯度的单位面积上的物质数量。根据所取单位的不同可有质量通量mkg/(m2s)或摩尔通量Nkmol/(m2s)两种表示方法。,3、扩散通量,根据参照系的不同,扩散通量分为净扩散通量和分子扩散通量。对于组分i,相对于固定坐标所确定的通量称为净扩散通量,用m或N表示;相对于以平均速度u或uM移动的坐标所确定的通量称为分子扩散通量,通常用j或J表示。,3-1分子扩散基本定律,组分A和组分B的净质量通量:,二元组分系统的扩散,混合物的总质量通量:,组分A和组分B的净摩尔通量:,混合物的总摩尔通量:,组分A和组分B的净质量通量可以看作分子扩散通量和流体流动带动的质量通量之和,即:,整理可得:,说明二元系统中两组分的分子扩散通量大小相等而方向相反。,3-1分子扩散基本定律,斐克定律:描述分子扩散过程中传质通量与浓度梯度之间关系的定律。,二、斐克(Fick)定律,式中,JA,z、ja,z为组分A在z方向相对于摩尔(质量)平均速度的分子扩散摩尔(质量)通量,单位kmol/(m2s)、kg/(m2s);dCA/dz和dA/dz为组分A在z方向上的浓度梯度,kmol/m4、kg/m4;DAB为分子扩散系数,m2/s,下标AB表示A在B中的扩散。,表达式:,(3-13),适用条件:等温等压且浓度场不随时间而改变的稳定态。,3-1分子扩散基本定律,注意:式(3-13)和(3-14)都是相对于以混合物的摩尔平均速度或质量平均速度移动着的动坐标系而言的。对于固定坐标这些表达式将不再适用。除非在等质量扩散或等摩尔扩散时,即混合物整体的质量平均速度或摩尔平均速度为零时,才能用式(3-13)和(3-14)表示扩散过程。,在非等温或非等压条件下,可以得到不受温度和压力限制的菲克定律:,(3-14),对于混合物整体的质量平均速度或摩尔平均速度不为零的固定坐标,即u或uM0,若二元混合物在z方向上的平均速度为常数,则组分A在z方向上的分子扩散摩尔通量可写为:,又,故,3-1分子扩散基本定律,同理:,即,A的实际传质通量,A的分子扩散通量,A的主体流动通量,对于二元混合物,有,代入上式,3-1分子扩散基本定律,可得:,写成矢量形式:,该式称为扩散方程式。表示组分A相对于固定坐标的净扩散通量等于该组分的分子扩散通量与该组分随混合物整体流动而传递的通量之和,实际上是相对于固定坐标的斐克定律。,(3-15),3-1分子扩散基本定律,式(3-15)中,若NA=-NB(称该类型的扩散为等摩尔逆扩散),则有,这说明等摩尔逆扩散时,无混合物整体流动,只有由浓度梯度推动的分子扩散。,且,例3-2温度为25C,总压力为105Pa的甲烷-氦(CH4-He)混合物盛于一容器中,其中某点的甲烷分压为0.6105Pa,距离该点2.0cm处的甲烷分压降低为0.2105Pa。设容器中总压恒定,扩散系数为0.675cm2/s,试计算甲烷在稳态时分子扩散的摩尔通量。,PA,1=0.6105Pa,PA,2=0.2105Pa,,解:,因总压力为常数,根据理想气体状态方程斐克定律可写为,,容器中的系统为二元扩散系统,设甲烷为A组分,氦为B组分,甲烷在z方向z1、z2处的分压分别为,则稳态扩散时甲烷分子扩散的摩尔通量为,3-1分子扩散基本定律,三、分子扩散系数,DAB可理解为沿扩散方向,在单位时间内每下降1单位浓度梯度通过单位表面积所扩散的物质质量,是表示物质扩散能力的参数。DAB的大小取决于扩散系统的压力、温度和组成的成分种类,主要依赖于实验测定。,将斐克定律,改写成,3-1分子扩散基本定律,1、气体的分子扩散系数,式中,p为总压力,Pa;MA、MB为组分A、B的分子量;vA、vB为组分气体A、B在正常沸点下其液态的摩尔容积,cm3/mol。,对于气体混合物的分子扩散系数,可根据由气体分子运动理论所建立的半经验公式计算得到,即,(3-16),近年来更精确的研究表明扩散系数随着温度变化的指数按照1.75计算,即T1.75。故如果已知温度T1、压强p1条件下的分子扩散系数D1,AB,则温度T2和压力p2条件下的分子扩散系数D2,AB可以表示为:,由上式可以看出,DAB与气体的浓度无关,并随着气体温度的升高及总压的下降而增大。,(3-17),3-1分子扩散基本定律,2、液体的分子扩散系数,式中,MB为溶剂B的分子量,kg/kmol;B为溶剂B的粘度,Pa.s;为溶剂B的缔合因子;VbA为溶质A在正常沸点下的分子体积,cm3/mol。,液体的扩散系数不仅与物质种类和温度有关,而还随溶质浓度而变化,只有稀溶液的扩散系数才可视为常数。常用的是威尔基等提出的公式:,3-1分子扩散基本定律,(3-18),如果已知温度T1、溶剂粘度为B1条件下的液体扩散系数D1,AB,则可以根据下式来计算温度T2和溶剂粘度为B2条件下的液体扩散系数D2,AB:,由于液体的密度和粘度都比气体大,故溶质在溶剂中的扩散系数比气体要小约5个数量级,一般在10-9-10-10m2/s之间。,3-1分子扩散基本定律,3、固体的分子扩散系数,固体中的扩散,与固体结构无关的遵循斐克定律的扩散,与结构有关的在多孔材料内的扩散,(1)、遵循斐克定律的固体中的扩散,由于物质在固体中的扩散无整体流动,故其摩尔通量为:,(3-19),扩散系数不受压强的影响,比液体中的扩散系数要小几个数量级。,(2)、多孔材料中的扩散,这种扩散主要为气体在多孔材料中的扩散,如矿石的还原和焙烧,粉末冶金制品的脱气等。固体材料的物理结构或孔隙特征对扩散过程起着决定作用,根据孔隙大小可将这种扩散分为孔隙直径大于气体分子的平均自由行程和孔隙直径远小于气体分子平均自由行程两种情况。,(3-20),斐克定律仍然适用,但是需要对扩散系数进行校正,引入有效扩散系数。,a、孔隙直径大于气体分子的平均自由行程,式中,为多孔材料的孔隙率;为曲折因素。曲折因素由实验确定,对于松散颗粒=1.5-2.0,对于紧密颗粒=7-8。,3-1分子扩散基本定律,(3-21),当压强很低,或孔隙直径远小于气体分子平均自由行程,则气体分子与孔隙壁碰撞的机会多于气体分子之间的碰撞机会,此时可将分子之间的碰撞阻力忽略不计,扩散阻力取决于分子与壁的碰撞,此种扩散称为纽特森扩散。,b、孔隙直径小于气体分子的平均自由行程纽特森扩散,式中,,为平均孔隙半径,m;,扩散物质A的分子均方根速度,,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!