钻镗专用机床液压系统课程设计

上传人:y****3 文档编号:12940020 上传时间:2020-06-03 格式:DOC 页数:26 大小:2.16MB
返回 下载 相关 举报
钻镗专用机床液压系统课程设计_第1页
第1页 / 共26页
钻镗专用机床液压系统课程设计_第2页
第2页 / 共26页
钻镗专用机床液压系统课程设计_第3页
第3页 / 共26页
点击查看更多>>
资源描述
.液压传动课程设计题目名称钻镗专用机床液压系统设计专业班级15级机械设计制造及其自动化(升本)学生姓名刘备学 号xxxxxxxxxxx指导教师诸葛亮 机械与车辆工程系二一四年六月六日目 录一、任务书3二、指导教师评阅表4三、设计内容5 (一)5 (二)5 (三)5 (四)6(五)6四、设计小结14五、参考资料14蚌埠学院机械与车辆工程系液压传动课程设计任务书 班级 2015机械设计制造及自动化升本 姓名 刘备 学号 指导教师:诸葛亮一、 设计题目:设计一台卧式多轴镗孔专用机床的液压传动系统,要完成的工作循环是“快进工进快退原位停止”,液压系统的主要参数与性能要求如下:加工时轴向最大切削力为120000N,移动部件总重力G=22000N;导轨形式为矩形,静摩擦系数fs0.2;动摩擦系数fd0.1,快进行程为100mm,快进与快退的速度均为6m/min,工进行程为60mm,工进速度为50mm/min,加速和减速时间要求不大于0.2s,机床加工时,要求快进转工进平稳可靠,请设计该组合机床的液压传动系统。二、设计要求:液压系统图拟定时需要提供2种以上的设计方案的选择比较。从中选择你认为更好的一种进行系统元件选择计算。三、工作量要求1液压系统图1张(A1)2液压缸装配图1张3设计计算说明书1份4、 设计时间2016年6月6日-2016年6月10日蚌埠学院本科课程设计评阅表 机械与车辆工程系 2015级 机械设计制造及自动化升本专业学生姓名刘备学 号XXXXXXX课题名称钻镗专用机床液压系统设计指导教师评语:指导教师(签名): 2016年 6 月16 日 评定成绩引 言液压系统已经在各个部门得到越来越广泛的应用,而且越先进的设备,其应用液压系统的部门就越多。液压传动是用液体作为来传递能量的,液压传动有以下优点:易于获得较大的力或力矩,功率重量比大,易于实现往复运动,易于实现较大范围的无级变速,传递运动平稳,可实现快速而且无冲击,与机械传动相比易于布局和操纵,易于防止过载事故,自动润滑、元件寿命较长,易于实现标准化、系列化。液压传动的基本目的就是用液压介质来传递能量,而液压介质的能量是由其所具有的压力及力流量来表现的。而所有的基本回路的作用就是控制液压介质的压力和流量,因此液压基本回路的作用就是三个方面:控制压力、控制流量的大小、控制流动的方向。所以基本回路可以按照这三方面的作用而分成三大类:压力控制回路、流量控制回路、方向控制回路。第1章 明确液压系统的设计要求设计一台卧式多轴镗孔专用机床的液压传动系统,要完成的工作循环是“快进工进快退原位停止”,液压系统的主要参数与性能要求如下:加工时轴向最大切削力为120000N,移动部件总重力G=22000N;导轨形式为矩形,静摩擦系数fs0.2;动摩擦系数fd0.1,快进行程为100mm,快进与快退的速度均为6m/min,工进行程为60mm,工进速度为50mm/min,加速和减速时间要求不大于0.2s,机床加工时,要求快进转工进平稳可靠,请设计该组合机床的液压传动系统。第二章 负载与运动分析负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:夹紧力,导轨摩擦力,惯性力。 在对液压系统进行工况分析时,本设计实例只考虑组合机床动力滑台所受到的工作负载、惯性负载和机械摩擦阻力负载,其他负载可忽略。(1) 工作负载FW工作负载是在工作过程中由于机器特定的工作情况而产生的负载,对于金属切削机床液压系统来说,沿液压缸轴线方向的切削力即为工作负载,即Ft=120000N(2) 阻力负载阻力负载主要是工作台的机械摩擦阻力,分为静摩擦阻力和动摩擦阻力两部分。导轨的正压力等于动力部件的重力,设导轨的静摩擦力为,则 静摩擦阻力动摩擦阻力 (3) 惯性负载最大惯性负载取决于移动部件的质量和最大加速度,其中最大加速度可通过工作台最大移动速度和加速时间进行计算。已知启动换向时间为0.05s,工作台最大移动速度,即快进、快退速度为4.5m/min,因此惯性负载可表示为 如果忽略切削力引起的颠覆力矩对导轨摩擦力的影响,并设液压缸的机械效率=0.9,根据上述负载力计算结果,可得出液压缸在各个工况下所受到的负载力和液压缸所需推力情况,如表1所表1 液压缸总运动阶段负载表(单位:N)工况负载组成液压缸负载F/N液压缸推力启动44004889加速31343482快进22002444工进2420026889快退22002444反向启动44004889加速31343482快退22002444制动1265.581406.2 第三章 负载图和速度图的绘制 负载图按上面数值绘制,如下图a所示。速度图按已知数值和工进速度绘制,如下图b所示图a 负载图图b 速度图第四章 确定液压系统主要参数4.1确定液压缸工作压力由表2和表3可知,组合机床液压系统在最大负载约为12000 N时宜取3MP。表2按负载选择工作压力负载/ KN50工作压力/MPa 0.811.522.5334455 表3 各种机械常用的系统工作压力机械类型机床农业机械小型工程机械建筑机械液压凿岩机液压机大中型挖掘机重型机械起重运输机械磨床组合机床龙门刨床拉床工作压力/MPa0.82352881010182032 表4 执行元件背压力系统类型背压力/MPa简单系统或轻载节流调速系统0.20.5回油路带调速阀的系统0.40.6回油路设置有背压阀的系统0.51.5用补油泵的闭式回路0.81.5回油路较复杂的工程机械1.23回油路较短且直接回油可忽略不计 表5 按工作压力选取d/D工作压力/MPa5.05.07.07.0d/D0.50.550.620.700.7 表6 按速比要求确定d/D2/11.151.251.331.461.612d/D0.30.40.50.550.620.71 注:1无杆腔进油时活塞运动速度; 2有杆腔进油时活塞运动速度。4.2计算液压缸主要结构参数由于工作进给速度与快速运动速度差别较大,且快进、快退速度要求相等,从降低总流量需求考虑,应确定采用单杆双作用液压缸的差动连接方式。通常利用差动液压缸活塞杆较粗、可以在活塞杆中设置通油孔的有利条件,最好采用活塞杆固定,而液压缸缸体随滑台运动的常用典型安装形式。这种情况下,应把液压缸设计成无杆腔工作面积是有杆腔工作面积两倍的形式,即活塞杆直径d与缸筒直径D呈d = 0.707D的关系。 工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象,因此液压缸的回油腔应设置一定的背压(通过设置背压阀的方式),选取此背压值为p2=0.8MPa。快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的来油连接),但连接管路中不可避免地存在着压降,且有杆腔的压力必须大于无杆腔,估算时取0.5MPa。快退时回油腔中也是有背压的,这时选取背压值=0.6MPa。工进时液压缸的推力计算公式为,式中:F 负载力 hm液压缸机械效率 A1液压缸无杆腔的有效作用面积 A2液压缸有杆腔的有效作用面积 p1液压缸无杆腔压力 p2液压有无杆腔压力因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为液压缸缸筒直径为 mm由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d = 0.707D,因此活塞杆直径为d=0.707112.63=79.63mm,根据GB/T23481993对液压缸缸筒内径尺寸和液压缸活塞杆外径尺寸的规定,圆整后取液压缸缸筒直径为D=115mm,活塞杆直径为d=80mm。此时液压缸两腔的实际有效面积分别为:工作台在快进过程中,液压缸采用差动连接,此时系统所需要的流量为工作台在快退过程中所需要的流量为工作台在工进过程中所需要的流量为q工进 =A1v2=0.59 L/min根据上述液压缸直径及流量计算结果,进一步计算液压缸在各个工作阶段中的压力、流量和功率值如下计算液压缸各工作阶段的工作压力、流量和功率设快进、快退时,回油腔压力p=0.5MPa,工进回油腔背压p2=0.8MPa。1快进(差动)(1)进油腔压力 p1=(F0+pA2)/(A1- A2)p1=(2444+0.510653.610-4)/(103.82- 53.6)10-4=1.02MPa (2)所需流量q=(A1- A2)V1q=(103.82- 53.6)10-46/min=3.01310-2 m3/min =30.13L/min(3)输入功率 P= P1q P=1.021063.01310-2/60 (w) =0.512kw2. 工进(1)进油腔压力p1=(F0+ p2A2)/A1 p1=(26889+ 0.810653.610-4)/103.8210-4 (Pa)=300.299104=3.003MPa;(2)所需流量 q=A1V2 q=103.8210-40.05 =5.19110-4 m3/ min =0.52 L/ min;(3) 输入功率 P= p1q P=3.0031060.5210-3/60 (w) =0.026kw3快退(1)进油腔压力 p1=(F0+pA1)/A2 取p=0.6MPa 作为快进时的油管中压降p,快退时回油腔中有背压p2也可按0.6MPa估算; 因此,p1=(2444+0.6106103.8210-4)/53.610-4 (Pa)=1.618MPa;(2)所需流量 q=A2V3 q=53.610-46(m3/ min)=32.16L/ min;(3)输入功率 P= p1qP=1.61810632.1610-3/60 (w) =0.867kw如表4所示。工况推力F/N回油腔压力P2/MPa进油腔压力P1/MPa输入流量q/L.min-1输入功率P/Kw计算公式快进启动488901.02加速24821.7351.135快速24441.7271.12730.130.512工进268890.62.8990.520.026 快退起动488900.912 P= p1q加速34820.61.812快退24440.61.61832.160.867制动1406.20.61.425表4 各工况下的主要参数值表3 各工况下的主要参数值注:。第五章 液压系统方案设计根据组合机床液压系统的设计任务和工况分析,所设计机床对调速范围、低速稳定性有一定要求,因此速度控制是该机床要解决的主要问题。速度的换接、稳定性和调节是该机床液压系统设计的核心。此外,与所有液压系统的设计要求一样,该组合机床液压系统应尽可能结构简单,成本低,节约能源,工作可靠。5.1选用执行元件因系统运动循环要求正向快进和工进,反向快退,且快进,快退速度相等,因此选用单活塞杆液压缸,快进时差动连接,无杆腔面积A1等于有杆腔面积A2的两倍。5.2速度控制回路的选择工况图表明,所设计组合机床液压系统在整个工作循环过程中所需要的功率较小,系统的效率和发热问题并不突出,因此考虑采用节流调速回路即可。虽然节流调速回路效率低,但适合于小功率场合,而且结构简单、成本低。该机床的进给运动要求有较好的低速稳定性和速度-负载特性,因此有三种速度控制方案可以选择,即进口节流调速、出口节流调速、限压式变量泵加调速阀的容积节流调速。钻镗加工属于连续切削加工,加工过程中切削力变化不大,因此钻削过程中负载变化不大,采用节流阀的节流调速回路即可。但由于在钻头钻入铸件表面及孔被钻通时的瞬间,存在负载突变的可能,因此考虑在工作进给过程中采用具有压差补偿的进口调速阀的调速方式,且在回油路上设置背压阀。由于选定了节流调速方案,所以油路采用开式循环回路,以提高散热效率,防止油液温升过高。从工况图中可以清楚地看到,在这个液压系统的工作循环内,液压要求油源交替地提供低压大流量和高压小流量的油液。而快进快退所需的时间和工进所需的时间分别为=2.6s亦即是=27.69因此从提高系统效率、节省能量角度来看,如果选用单个定量泵作为整个系统的油源,液压系统会长时间处于大流量溢流状态,从而造成能量的大量损失,这样的设计显然是不合理的。如果采用一个大流量定量泵和一个小流量定量泵双泵串联的供油方式,由双联泵组成的油源在工进和快进过程中所输出的流量是不同的,此时液压系统在整个工作循环过程中所需要消耗的功率估大,除采用双联泵作为油源外,也可选用限压式变量泵作油源。但限压式变量泵结构复杂、成本高,且流量突变时液压冲击较大,工作平稳性差,最后确定选用双联液压泵供油方案,有利于降低能耗和生产成本,如图3所示。图3 双泵供油油源 5.3选择快速运动和换向回路根据本设计的运动方式和要求,采用差动连接与双泵供油两种快速运动回路来实现快速运动。即快进时,由大小泵同时供油,液压缸实现差动连接。本设计采用二位二通电磁阀的速度换接回路,控制由快进转为工进。与采用行程阀相比,电磁阀可直接安装在液压站上,由工作台的行程开关控制,管路较简单,行程大小也容易调整,另外采用液控顺序阀与单向阀来切断差动油路。因此速度换接回路为行程与压力联合控制形式。5.4速度换接回路的选择所设计多轴钻床液压系统对换向平稳性的要求不高,流量不大,压力不高,所以选用价格较低的电磁换向阀控制换向回路即可。为便于实现差动连接,选用三位五通电磁换向阀。为了调整方便和便于增设液压夹紧支路,应考虑选用Y型中位机能。由前述计算可知,当工作台从快进转为工进时,进入液压缸的流量由30.13L/min降为0.52 L/min,可选二位二通行程换向阀来进行速度换接,以减少速度换接过程中的液压冲击,选用双作用叶片泵双泵供油,调速阀进油节流阀调速的开式回路,溢流阀做定压阀。为了换速以及液压缸快退时运动的平稳性,回油路上设置背压阀,初定背压值Pb=0.8MPa。 a.换向回路 b.速度换接回路图4 换向和速度切换回路的选择5.5组成液压系统原理图选定调速方案和液压基本回路后,再增添一些必要的元件和配置一些辅助性油路,如控制油路、润滑油路、测压油路等,并对回路进行归并和整理,就可将液压回路合成为液压系统,即组成如图5所示的液压系统图。图 5 液压系统图为便于观察调整压力,在液压泵的进口处,背压阀和液压腔进口处设置测压点,并设置多点压力表开关,这样只需一个压力表即能观察各压力。要实现系统的动作,即要求实现的动作顺序为:启动加速快进工进快退停止。则可得出液压系统中各电磁铁的动作顺序如表5所示。表中“+”号表示电磁铁通电或行程阀压下;“”号表示电磁铁断电或行程阀复位。表5 电磁铁的动作顺序表5.6 系统图的原理1 快进 快进如图所示,按下启动按钮,电磁铁1YA通电,由泵输出地压力油经2三位五通换向阀的左侧,这时的主油路为: 进油路:泵 向阀10三位五通换向阀2(1YA得电)行程阀3液压缸左腔。 回油路:液压缸右腔三位五通换向阀2(1YA得电)单向阀6行程阀3液压缸左腔。由此形成液压缸两腔连通,实现差动快进,由于快进负载压力小,系统压力低,变量泵输出最大流量。2 工进 挡块还是压下,行程开关使3YA通电,二位二通换向阀将通路切断,这时油必须经调速阀4和15才能进入液压缸左腔,回油路和减速回油完全相同,此时变量泵输出地流量自动与工进调速阀15的开口相适应,故进给量大小由调速阀15调节,其主油路为:进油路:泵 向阀10三位五通换向阀2(1YA得电)调速阀4调速阀15液压缸左腔。回油路:液压缸右腔三位五通换向阀2背压阀8液控顺序阀7油箱。3 死挡铁停留 当滑台完成工进进给碰到死铁时,滑台即停留在死挡铁处,此时液压缸左腔的压力升高,使压力继电器14发出信号给时间继电器,滑台停留时间由时间继电器调定。4 快退滑台停留时间结束后,时间继电器发出信号,使电磁铁1YA、3YA断电,2YA通电,这时三位五通换向阀2接通右位,因滑台返回时的负载小,系统压力下降,变量泵输出流量又自动恢复到最大,滑快速退回,其主油路为:进油路:泵 向阀10三位五通换向阀2(2YA得电)液压缸右腔。回油路:液压缸左腔单向阀5三位五通换向阀2(右位)油箱。5 原位停止 当滑台退回到原位时,挡块压下原位行程开关,发出信号,使2YA断电,换向阀处于中位,液压两腔油路封闭,滑台停止运动。这时液压泵输出的油液经换向2直接回油箱,泵在低压下卸荷。第六章 液压元件的选择6.1 确定液压泵本设计所使用液压元件均为标准液压元件,因此只需确定各液压元件的主要参数和规格,然后根据现有的液压元件产品进行选择即可。(1)计算液压泵的最大工作压力 由于本设计采用双泵供油方式,根据液压系统的工况图,大流量液压泵只需在快进和快退阶段向液压缸供油,因此大流量泵工作压力较低。小流量液压泵在快速运动和工进时都向液压缸供油,而液压缸在工进时工作压力最大,因此对大流量液压泵和小流量液压泵的工作压力分别进行计算。 根据液压泵的最大工作压力计算方法,液压泵的最大工作压力可表示为液压缸最大工作压力与液压泵到液压缸之间压力损失之和。 对于调速阀进口节流调速回路,选取进油路上的总压力损失,同时考虑到压力继电器的可靠动作要求压力继电器动作压力与最大工作压力的压差为0.5MPa,则小流量泵的最高工作压力可估算为大流量泵只在快进和快退时向液压缸供油,图4表明,快退时液压缸中的工作压力比快进时大,如取进油路上的压力损失为0.5MPa,则大流量泵的最高工作压力为: (2)计算总流量 表3表明,在整个工作循环过程中,液压油源应向液压缸提供的最大流量出现在快进工作阶段,为30.13 L/min,若整个回路中总的泄漏量按液压缸输入流量的1.1计算,则液压油源所需提供的总流量为: 工作进给时,液压缸所需流量约为0.52 L/min,但由于要考虑溢流阀的最小稳定溢流量3 L/min,故小流量泵的供油量最少应为3.52L/min。据据以上液压油源最大工作压力和总流量的计算数值,因此选取PV2R12-6/20型双联叶片泵,其中小泵的排量为6mL/r,大泵的排量为20mL/r,若取液压泵的容积效率=0.9,则当泵的转速=960r/min时,液压泵的实际输出流量为 由于液压缸在快退时输入功率最大,这时液压泵工作压力为2.118MPa、流量为32.16r/min。取泵的总效率,则液压泵驱动电动机所需的功率为:根据上述功率计算数据,此系统选取Y100L-6型电动机,其额定功率,额定转速。6.2 确定其它元件及辅件(1) 确定阀类元件及辅件根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表6所列。表6 液压元件规格及型号序号元件名称通过的最大流量q/L/min规格型号额定流量qn/L/min额定压力Pn/MPa额定压降Pn/MPa1双联叶片泵PV2R12-6/26(6+20)16/142三位五通电液换向阀3635DY636.3 0.53行程阀3622C-63(B)636.3 0.34调速阀1Q-10(B)0.050.56.35单向阀36I-63(B)636.30.26单向阀36 636.30.27液控顺序阀36XY-63(B)630.36.30.38背压阀0.3B-10(B)106.39溢流阀36Y-63(B)636.310单向阀36I-63(B)636.3 0.0211滤油器42wu-6310063 0.0212压力表开关KF3-E3B 3测点1613单向阀36I-63(B)636.30.214压力继电器DP1-63(B)0*注:此为电动机额定转速为960r/min时的流量。(2) 确定油管在选定了液压泵后,液压缸在实际快进、工进和快退运动阶段的运动速度、时间以及进入和流出液压缸的流量,与原定数值不同,重新计算的结果如表9所列。表9各工况实际运动速度、时间和流量流量、速度快进工进快退输入流量=46.43=22.46排出流量=23.97=0.27=43.50运动速度=4.47=0.5=4.19 由表9可以看出,液压缸在各阶段的实际运动速度符合设计要求。根据表9数值,按表10推荐的管道内允许速度取=4 m/s,由式计算得与液压缸无杆腔和有杆腔相连的油管内径分别为为了统一规格,按产品样本选取所有管子均为内径20mm、外径28mm的10号冷拔钢6.3 确定油箱 油箱的容量按式估算,当取为7时,求得其容积为,按JB/T7983-1999规定,取标准值V=250L。第七章 液压系统性能验算 7.1 验算系统压力损失由于系统管路布置尚未确定,所以只能估算系统压力损失。估算时,首先确定管道内液体的流动状态,然后计算各种工况下总的压力损失。 1快进 滑台快进时,液压缸通过电液换向阀差动连接。在进油路上,油液通过单向阀10、电液换向阀2,然后与液压缸有杆腔的回油汇合通过行程阀3进入无杆腔。在进油路上,压力损失分别为在回油路上,压力损失分别为将回油路上的压力损失折算到进油路上去,便得出差动快速运动时的总的压力损失 2工进 滑台工进时,在进油路上,油液通过电液换向阀2、调速阀4进入液压缸无杆腔,在调速阀4处的压力损失为0.5MPa。在回油路上,油液通过电液换向阀2、背压阀8和大流量泵的卸荷油液一起经液控顺序阀7返回油箱,在背压阀8处的压力损失为0.5MPa。因此这时液压缸回油腔的压力P2为可见此值小于原估计值0.8MPa。故可按表7中公式重新计算工进时液压缸进油腔压力P1,即此值与表7中数值相近。 考虑到压力继电器的可靠动作要求压差,故溢流阀9的调压应为3快退 滑台快退时,在进油路上,油液通过单向阀10、电液换向阀2进入液压缸有杆腔。在回油路上,油液通过单向阀5、电液换向阀2和单向阀13返回油箱。因此进油路上总压降为此值远小于估计值,因此液压泵的驱动电动机的功率是足够的。回油路上总压降为此值与表7的数值基本相符,故不必重算。所以快退时的最大工作压力Pp应为 此值是调整液控顺序阀7的调整压力的主要参考数据。7.2油液温升验算液压传动系统在工作时,有压力损失、容积损失和机械损失,这些损失所消耗的能量多数转化为热能,使油温升高,导致油的粘度下降、油液变质、机器零件变形等,影响正常工作。为此,必须控制温升T在允许的范围内,如一般机床D= 25 30 ;数控机床D 25 ;粗加工机械、工程机械和机车车辆D= 35 40 。 液压系统的功率损失使系统发热,单位时间的发热量f(kW)可表示为式中 系统的输入功率(即泵的输入功率)(kW); 系统的输出功率(即液压缸的输出功率)(kW)。 若在一个工作循环中有几个工作阶段,则可根据各阶段的发热量求出系统的平均发热量对于本次设计的组合机床液压系统,其工进过程在整个工作循环中所占时间比例达95%因此系统发热和油液温升可用工进时的发热情况来计算。 工进时液压缸的有效功率(即系统输出功率)为这时大流量泵通过顺序阀10卸荷,小流量泵在高压下供油,所以两泵的总输出功率(即系统输入功率)为:由此得液压系统的发热量为即可得油液温升近似值:温升小于普通机床允许的温升范围,因此液压系统中不需设置冷却器。设计小结液压传动课程设计是液压课程当中一个重要环节,通过这次课程设计我从中学到了很多东西,巩固和深化了已学的理论知识,掌握了液压系统设计计算的一般方法和步骤。此外还锻炼了我的机械制图和计算机绘图能力,提高了我的结构设计和运算能力。 但是,由于在设计方面没有经验,理论知识学的不牢固,在设计中也出现了很多的问题,如:由于忙于应对各种考试,就放松了对液压课的学习,以致有的重要公式都想不起来了,设计时就感觉手忙脚乱。另外,在查表和计算时也出现了很多问题。但是在同组同学的共同努力下,我们最终还是按时完成了设计任务,虽然大家在设计时都感觉很累、很枯燥,但当看到我们的劳动成果时,大家心里都有一种小小的成就感! 这次的课程设计几个人人一组,数据不一样,听老师说可以有几种不同的液压系统图,这让我明白了液压的多元性。通过设计,我又明白了相同的工作元件当不同的连接时可以产生不同的工作效果,不同的元件,采用不同的方法也可以达到相同的效果。例如,液压缸可以用单杆活塞式液压缸,也可以用柱塞式液压缸。在此设计中,又再次深刻了解了各种基本回路。在设计的过程中还培养了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结!参考文献【1】 成大先.机械设计手册.单行本.液压传动.化学工业出版社,北京:2004.1【2】 液压传动课程设计指导书【3】 左健民.液压与气压传动 第四版 机械工业出版社,北京:2007.5【4】张利平.液压传动设计指南 化学工业出版社,北京:2009【5】 高等工程专科学校机制工艺及液压教学研究会液压组 液压传动设计指导书 华中工学院出版社,1987.12.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 职业技能


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!