一种先进的超精密磨床外文文献翻译、中英文翻译

上传人:Q145****609 文档编号:12882835 上传时间:2020-06-01 格式:DOC 页数:13 大小:748.61KB
返回 下载 相关 举报
一种先进的超精密磨床外文文献翻译、中英文翻译_第1页
第1页 / 共13页
一种先进的超精密磨床外文文献翻译、中英文翻译_第2页
第2页 / 共13页
一种先进的超精密磨床外文文献翻译、中英文翻译_第3页
第3页 / 共13页
点击查看更多>>
资源描述
附录1:外文翻译一种先进的超精密磨床兰迪斯.隆德公司的生产精密机械的克兰菲尔德部门,最近生产了一种超精密的端面磨床,该机床拥有几个自动监控功能。该公司免费给克兰菲尔德大学的精密工程小组提供机床,以便他们进行研究,特别是里外都完整的无损害的端面区部分。本文论述了机械的设计、初加工试验以及可能的研究项目。这些项目将因为这种先进的机械系统的应用而受益,系统结合了最先进的自动检测功能与控制加工过程功能。关键词:自动检测 磨削 机械设计 精密机器1 绪论生产精密机械的克兰菲尔德是UNOVA的一个子公司,它的专长是用先进的原料生产和制造出价格合理的机器元件,包括陶瓷、玻璃、金属互化物及硬质合金钢。克兰菲尔德大学是以工业和制造业著称的大学,它重视与工业界的密切联系,而且现在正在开展超精密的、超高速加工的机械研究项目,包括超硬材料加工、脆性材料的韧性加工以及汽车产业的精密加工。这两个团体互补的研究兴趣导致了生产精密机械的克兰菲尔德公司设计和生产了一种先进的超精密端面磨床给属于SIMS的精密工程研究小组。这使得该小组拥有一系列的研究项目,特别是对于里外都完整的无损害的端面区部分。原料的纳米分散加工及控制被看作是一种中期至长期解决成本和时间问题的方法,这两个问题折磨着电光学与其它精密零件的制造。例如:易碎原料的延展抛光能够提供光滑的表面,事实上,它比一般的材料拥有较高的平滑度和外形精确度1。更重要的是,一个球表面很少或没有经历表面下的损伤,因此消除了联合传统抛光进行后续抛光的步骤。许多的“微小精密”产品(如半导体、光纤通信系统、计算机辅助系统等),以及较大的被航空、汽车等应用的元件的性能越来越依赖于更高的几何精度和微-纳米表面。最近,汽车工业已经显示了未来对元件表面的要求,它需要具有几个关键的传输元件,这种传输性能属于光学性质,它的目标是用10纳米的Ra表面经济地完成对硬钢的直接机械加工,而且无需对硬钢进行抛光。玻璃和陶瓷有无损害的表面,硬钢有光学性质表面,这种条件是非常严格的,它需要(a)一系列的机械工具,它们不是一般的最好的生产工具,例如,精度高、运动顺畅、环硬度高2;(b)辅助设备的加入,人、特别是为了适应特殊的应用,例如砂轮的打磨维修和调节;以及(c) 使用正确的磨削技术(许多的变量车轮的型号;冷冻剂;速度;供给等)。所有的条件都必须被满足,现在能够满足这些条件的晶圆磨机器已经生产出来。2 目标为了满足上面所提及的表面完整性和生产率的要求,这些要求适用于一系列的元件,主要的发展目标包括:1)一个有高标准(上表面和下表面)完整性的较大的元件产品的机械加工效率2)对易碎材料(眼镜、陶瓷)优先选择柔软的方式进行机械加工3)一个只有一个设置的单一过程来取代典型的三级研磨、腐蚀和抛光过程,能够实现更高的生产率。3过程这个过程的一个主要要求是它应该能够在350毫米直径元件上进行极度平滑表面加工的能力。而且,表面应该是光滑的(小于50Ra)以及有最小的表面损伤。理论上,其表面的性质应接近于抛光表面的性质。为了满足这些严格的要求,旋转磨削已被应用。旋转磨削的特性是它不像传统的表面抛光,它有一个恒接触长度和恒切削力。如图1所示的磨削原理。砂轮、工件的旋转以及砂轮的轴供给去除工件的表面余量,直到达到它的最后几何厚度。4 本机 该进程和组件的较高要求需要质量非常高的环刚度机。 研磨机(图2)面的设计目标是: 图1关于研磨作业问题 1. 要求为达到亚微米亚表面损伤,环刚度应该优于200 N /m_1具有良好的动态阻尼。 2. 要实现总厚度 变化(TTV)的0.5 m公差,控制间距(轮部件的表面)应该大于0.333弧秒。 3. 要实现亚微米亚表面损伤,切深度控制应该优于0.1 m。 4. 需要轴向误差议案实现亚微米亚表面损伤,锭数应该优于0.1 m。5. 测量与反馈元件厚度为0.5 m,以达到微米的厚度公差。在地面几何平面取决于相对位置的砂轮和旋转轴工件。图3显示的相对运动和机轴。共有11个轴,再加上三个数字遥控加载项(未显示),随动控制下的所有驱动。它们是: S1磨削主轴 C Workhead主轴 Z进料 X砂轮 S2修整主轴 W轴修整 A倾斜间距 B倾斜偏航 S3驱动洗刷 P探头厚度 洗刷臂如下所述,平面精确度可以由旋转轴加上旋转的叠加有适当的主轴路线方法实现。此外,这原型研究纳入机受益于以下国家的最先进的自动功能 监督和加工过程的控制。4.1 调整工件和磨削 转动平衡性 因为地面几何表面可描述几何方程,这两个旋转轴S1和C中一相对对齐(图3)已进行简化。研磨进程需要平面砂轮和工件的平面要保持作为Z轴进给的应用之间的特定角度。这是典型的多角度小于1度,使得工件和车轮接近于平行。这个角度是由三个测量LVDT的监测传感器,测量位移之间的磨主轴防护外罩,并就精密加工表面外罩。该测量传感器放置在磨削主轴外罩周围,大约从中心等距离轮子的主轴在车轮平面轴,处于已知的分离位置。从这些传感器的信息是返回到控制系统修改控制的A - (节距),B组,(偏航)和Z -(料)轴。这是一个具有独特的保持工件平整度功能的机器,它减少和亚表面损伤工件表面光洁度并且提高了磨削力。这扭曲影响磨削主轴workhead路线,而当时生产非平坦表面。按照常规机械通过机械调整对齐和依靠力量和挠度一般可以均衡。然而,如果在这台机器的工艺条件变化时,将会自动校准补偿。这可以通过优化以适应材料和车轮条件在控制系统软件的变化。 如图4.所示为Z轴伺服控制功能框图 超精密磨床641工作面 图2. 面对磨床图3. 轴的名称图4 Z轴功能框图4.2 砂轮 粗加工和精加工的车轮是通过对一个轴的专利系统同心安装,其中包括一前进/收回机制的粗加工轮,如图5.所示 。为了最大限度地组成生产量, 将运用第一轮来获得高的材料去除率。进行细粒度砂轮整理,然后用获得成品尺寸和表面完整性。图5单轴双滚轮系统 4.3 检测砂轮联系 声波放射(AE)传感器用于建立初始 砂轮之间的接触和组件。由于建立第一个接触到非常精细的限制的重要性,当完成磨削,环传感器是用于workhead 和磨削主轴。这些都非常敏感,在主轴的正对面,靠近信号源。对机砂轮修整装置主轴也是以使声波放射传感器“触摸衣”磨轮。 4.4 磨削力自动测量 通过磨削力测量传感器内放置力循环以远离外部力量,例如丝杠螺母,及其相关的摩擦。测量研磨力度给出了砂轮磨损很好的体现。4.5 测量砂轮磨损以及构件厚度 砂轮磨损监测组件一起的厚度。一个特别设计的铁砧和LVDT探头集会用来衡量组成部分的厚度。这是所做的最初基准到铁砧和探针的多孔陶瓷真空吸盘面临哪些组件是固定的。 在测量元件厚度时,砧是在同一滑道为探针,接触卡盘基准与LVDT的探头使得与面对面接触组成部分,从而使一厚度测量。磨削车轮磨损,可读出的位置 Z轴以及与这夹头面对基准的地位并且热增长是衡量涡流探头对安装在工作砂轮和磨削主轴。任何增长都会由自动补偿调整相对两锭的位置。 参考资料1. J. Corbett and D. J. Stephenson, “The control of surface integrity by precision machining and machine design”, Sbornik Prednasek, Proceedings 1st International Conference of Precision Machining, Usti nad Labem, Czech Republic, pp. 3143, 57 September 2001.2. P. A. McKeown et al, “Ultra-precision, high stiffness CNC grinding machines for ductile mode grinding of brittle materials”, SPIE 1320, Infrared Technology and Applications, pp. 30313, 1990.3. Private communications, Xaar Technology Ltd, Cambridge, UK, 2000.4. P. M. Rhead et al., “A long range, low noise, non contact capacitance position sensor” Proceedings, 1st Euspen Topical Conference on Fabrication and Metrology and Nanotechnology, Copenhagen, Technical University of Denmark, IPT.028.00, pp. 458463, 2830 May, 2000.5. R. W. Whatmore, “Ferroelectrics, microsystems and nanotechnology”, Ferroelectrics 225, pp. 179192 (Proceedings ECAPD, Montreux, Switzerland, August 1998).6. P. A. Beltrao, A. E. Gee, J. Corbett, R. W. Whatmore, C. A. Goat and S. A. Impey, “Ductile mode machining of ferroelectric materials”, Proceedings, American Society for Precision Engineering18, pp. 598-601. (Presented at the 13th Annual Meeting of the American Society for Precision Engineering St. Louis, Missouri, October 1998.)7. C. A. Goat and R. W. Whatmore, “The effect of grinding conditions on lead zirconate titanate machinability”, Journal of the European Ceramics Society 19, pp. 13111313 (Proceedings Electroceramics 5, Montreux, Switzerland, August 1998).8. P. A. Beltrao, A. E. Gee, J. Corbett and R. W. Whatmore, “The use of the ELID method to assist in the ductile machining of ferroelectric ceramics”, Proceedings, 1st International Conference and general Meeting of the European Society for Precision Engineering and Nanotechnology, pp. 470473, 1999.9. P. A. Beltrao, A. E. Gee, J. Corbett, R. W. Whatmore, C. A.Goat and S. A. Impey, “Ductile mode machining of commercial PZT ceramics”, Annals of the CIRP 48 (1), pp. 43440, 1998.10. G. F. Archer and D. J. Stephenson, “Surfacing of twin-screw extruder barrels”, Surface Engineering, 10(4), p. 221, 1994.11. Metals Handbook, Volume 16, Machining, ASM, 1989.12. A. P. V. Baker, private communication.13. M. C. Shaw, Principles of Abrasive Processing, Oxford University Press, New York. 1996.45附录2:外文原文An Advanced Ultraprecision Face Grinding MachineJ. Corbett1, P. Morantz1, D. J. Stephenson1 and R. F. Read21School of Industrial & Manufacturing Science, Cranfield University, Bedford, UK; 2Cranfield Precision, Division of Landis Lund, Cranfield University, Cranfield, Bedford, UKCranfield Precision, Division of Landis Lund, has recently developed an ultraprecision face grinding machine which incor-porates several automatic supervision features. The company supplied the machine to Cranfield Universitys Precision Engin-eering Group in order that the group can undertake research, particularly in the area of damage-free grinding with high surface and subsurface integrity. The paper discusses the design of the machine, initial machining trials and potential research projects. Such projects will benefit from the avail-ability of such an advanced machine system which incorporates many state-of-the-art features for the automatic supervision and control of the machining process.Keywords: Automatic supervision; Grinding; Machine tool design; Precision machining1. IntroductionCranfield Precision, which is a UNOVA Company, specialises in the design and manufacture of machines for cost-effective production of components in advanced materials including ceramics, glasses, intermetallics and hard alloy steels. The School of Industrial and Manufacturing Science (SIMS), Cran-field University, places great importance on developing close collaborative links with industry and is currently undertaking a range of ultraprecision and high-speed machining research projects including superabrasive machining, ductile machining of brittle materials and precision machining for the automotive industry. The complementary research interests of the two organisations have resulted in Cranfield Precision developing and supplying an advanced ultraprecision face grinding machine to the Precision Engineering Research Group within SIMS. This will enable the group to undertake a wide range of research programmes, particularly in the area of damage-free grinding with high surface and sub surface integrity.Correspondence and offprint requests to: Prof. J. Corbett, School of Industrial and Manufacturing Science, Cranfield University, Bedford MK43 0AL, UK. E-mail: j.corbett cranfield.ac.uk.Materials processing with nanometric resolution and control is viewed as a mid- to long-term solution to the cost and time problems that plague the manufacturing of electro-optics and other precision components. For example, ductile grinding of brittle materials can provide surfaces, as ground, to nanometre smoothness and figure accuracy at higher production rates than usually encountered 1. More significantly, a ductile ground surface experiences little or no subsurface damage, thereby eliminating the need for the subsequent polishing step associa-ted with conventional grinding. The performance of many “microfeatured” products (e.g. semiconductor, optical communi-cations systems, computer peripherals, etc.), as well as larger components for aerospace and automotive applications, depends increasingly on higher geometric accuracies and micro- and nanostructured surfaces. Recently, the automotive industry has indicated a future requirement for the surfaces of certain key transmission components to be of “optical” quality, with targets of 10 nm Ra surface finish to be economically produced on hardened steel by direct machining, without polishing.The conditions under which damage-free surfaces can be produced on glasses and ceramics, and “optical” surfaces can be produced on hardened steel, are exacting, requiring (a) the use of a class of machine tool not normally found in even the best production facilities, e.g. high accuracy, smoothness of motion, loop stiffness 2, (b) the incorporation of ancillary features specially developed to suit the particular application (e.g. grinding wheel truing and conditioning), and (c) the use of the correct grinding technology for the application (many variables wheel type, coolant, speeds, feeds, etc). All the conditions must be satisfied and the wafer face grinding machine has been developed to meet them.2.ObjectivesIn order to meet the demands of surface integrity and pro-ductivity mentioned above, for a wide range of components, the principal objectives include the development of:1. A machining process capability for the manufacture of sizeable components with high levels of surface/subsurface integrity.640J. Corbett et al.2. Optimised “ductile mode” machining processes for brittle materials (glasses and ceramics).3. A single process, with only one set-up, to replace the typical three-stage lapping, etching and polishing process, resulting in much higher productivity.3. The ProcessA prime requirement of the process is that it should be capable of machining extremely flat surfaces on workpieces up to 350 mm diameter. Further, the surfaces should be smooth (50 nm Ra) and have minimum subsurface damage. Ideally the surface should be close to the quality obtained by polishing. In order to meet these demanding requirements rotation grinding is utilised. A feature of rotation grinding is that unlike conven-tional surface grinding, it has a constant contact length and constant cutting force. Figure 1 illustrates the grinding prin-ciple. Both the cup grinding wheel and workpiece rotate and the axial feed of the grinding wheel removes stock from the surface of the workpiece until it reaches its final thickness/geometry.4. The MachineThe demanding requirements of the process and component quality necessitate a machine of extremely high loop stiffness. The design targets for the face grinding machine (Fig. 2) are:Fig. 1. Face grinding operation.1. Loop stiffness better than 200 N mm21 with good dynamic damping, required to achieve submicron subsurface damage.2. Control of pitch (wheel to component surface) to better than 0.333 arc seconds, required to achieve a total thickness variation (TTV) tolerance of 0.5 mm.3. Control of cut-depth to better than 0.1 mm, required to achieve submicron subsurface damage.4. Axial error motions of spindles better than 0.1 mm, required to achieve submicron subsurface damage.5. Measurement and feedback of component thickness to 0.5 mm, required to achieve micron thickness tolerance.The geometry of the ground flat surface is determined by the relative position of the rotary axes of the grinding wheel and workpiece. Figure 3 indicates the relative machine motions and axes. There are 11 axes, plus three automatic robot loading motions (not shown), all driven under servo control. These are:S1Grinding spindleCWorkhead spindleZInfeedXCrossfeedS2Truing spindleWDressing axisA Tilt pitchB Tilt yawS3Chuck wash brushPProbe thicknessWash armAs described below, the flatness accuracy can be achieved by the superimposed rotations of the rotary axes coupled with an appropriate spindle alignment strategy. Further, this prototype research machine benefits from the incorporation of the following state-of-the-art features for the automatic supervision and control of the machining process.4.1Adjustment of the Workpiece and GrindingWheel PlanarityThe relative alignment of the two rotary spindles S1 and C (Fig. 3) is simplified because the geometry of the ground surface can be described by geometrical equations. The grind-ing process requires a specific angle between the plane of the grinding wheel and the plane of the workpiece to be maintained as the Z-axis infeed is applied. This angle is typically much less than a degree, so that the workpiece and wheel are nearly parallel. This angle is monitored by three gauging LVDT sensors which measure the displacement between the grinding spindle housing, and a precision-machined surface on the work-spindle housing. The gauging sensors are placed around the grinding spindle housing, roughly equidistant from the centre of the wheel spindle axis in the plane of the wheel, at a known separation. The information from these sensors is fed back into the control system to amend the control for the A-(pitch), B- (yaw) and Z- (infeed) axes. This is a unique feature of the machine, to maintain workpiece flatness because, as the workpiece subsurface damage reduces and the surface finish improves the grinding forces increase significantly. This has the effect of distorting the grinding spindle to workhead align-ment, which then produces non-flat surfaces. On conventional machines this alignment is adjusted by mechanical trial-and-error adjustment, and relies on the force and deflection always being uniform. However, on this machine if the process con-ditions are changed, the alignment is automatically compensated for. This can then be optimised to suit the material and wheel conditions by changes in the software of the control system. A functional block diagram for the servo control of the Z-axis is illustrated in Fig. 4. Fig. 2. Face grinding machine. Fig. 3. Axes nomenclatu642J. Corbett et al.Fig. 4. Z-axis functiona block diagram. ig. 5. Single axis dual wheel system.4.6 Ancillary FeaturesThe machine also has facilities for on machine component and chuck washing and also a robotic loading and unloading capa-bility to load and unload automatically components onto and from the workhead spindle.References1. J. Corbett and D. J. Stephenson, “The control of surface integrity by precision machining and machine design”, Sbornik Prednasek, Proceedings 1st International Conference of Precision Machining, Usti nad Labem, Czech Republic, pp. 3143, 57 September 2001.2. P. A. McKeown et al, “Ultra-precision, high stiffness CNC grind-ing machines for ductile mode grinding of brittle materials”, SPIE 1320, Infrared Technology and Applications, pp. 30313, 1990.3. Private communications, Xaar Technology Ltd, Cambridge, UK, 2000.4. P. M. Rhead et al., “A long range, low noise, non contact capaci-tance position sensor”, Proceedings, 1st Euspen Topical Confer-ence on Fabrication and Metrology and Nanotechnology, Copen-hagen, Technical University of Denmark, IPT.028.00, pp. 458 463, 2830 May, 2000.5. R. W. Whatmore, “Ferroelectrics, microsystems and nanotechnol-ogy”, Ferroelectrics 225, pp. 179192 (Proceedings ECAPD, Mon-treux, Switzerland, August 1998).6. P. A. Beltrao, A. E. Gee, J. Corbett, R. W. Whatmore, C. A. Goat and S. A. Impey, “Ductile mode machining of ferroelectric materials”, Proceedings, American Society for Precision Engineer-ing 18, pp. 598-601. (Presented at the 13th Annual Meeting of the American Society for Precision Engineering St. Louis, Mis-souri, October 1998.)7. C. A. Goat and R. W. Whatmore, “The effect of grinding con-ditions on lead zirconate titanate machinability”, Journal of the European Ceramics Society 19, pp. 13111313 (Proceedings Elec-troceramics 5, Montreux, Switzerland, August 1998).8. P. A. Beltrao, A. E. Gee, J. Corbett and R. W. Whatmore, “The use of the ELID method to assist in the ductile machining of ferroelectric ceramics”, Proceedings, 1st International Conference and general Meeting of the European Society for Precision Engin-eering and Nanotechnology, pp. 470473, 1999.9. P. A. Beltrao, A. E. Gee, J. Corbett, R. W. Whatmore, C. A. Goat and S. A. Impey, “Ductile mode machining of commercial PZT ceramics”, Annals of the CIRP 48 (1), pp. 43440, 1998.10. G. F. Archer and D. J. Stephenson, “Surfacing of twin-screw extruder barrels”, Surface Engineering, 10(4), p. 221, 1994.11. Metals Handbook, Volume 16, Machining, ASM, 1989.12. A. P. V. Baker, private communication.13. M. C. Shaw, Principles of Abrasive Processing, Oxford University Press, New York. 1996.
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!