条件概率知识点、例题、练习题.docx

上传人:s****u 文档编号:12755494 上传时间:2020-05-22 格式:DOCX 页数:16 大小:138.31KB
返回 下载 相关 举报
条件概率知识点、例题、练习题.docx_第1页
第1页 / 共16页
条件概率知识点、例题、练习题.docx_第2页
第2页 / 共16页
条件概率知识点、例题、练习题.docx_第3页
第3页 / 共16页
点击查看更多>>
资源描述
条件概率专题一、知识点 只须将无条件概率替换为条件概率,即可类比套用概率满足的三条公理及其它性质 在古典概型中 - 在几何概型中 -条件概率及全概率公式3.1.对任意两个事件A、B, 是否恒有P(A)P(A|B).答:不是. 有人以为附加了一个B已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P(A)P(A|B), 这种猜测是错误的. 事实上,可能P(A)P(A|B), 也可能P(A)P(A|B), 下面举例说明.在0,1,9这十个数字中, 任意抽取一个数字,令 A=抽到一数字是3的倍数; B1=抽到一数字是偶数; B2=抽到一数字大于8, 那么 P(A)=3/10, P(A|B1)=1/5, P(A|B2)=1. 因此有 P(A)P(A|B1), P(A)P(A|B2).3.2.以下两个定义是否是等价的. 定义1. 若事件A、B满足P(AB)=P(A)P(B), 则称A、B相互独立. 定义2. 若事件A、B满足P(A|B)=P(A)或P(B|A)=P(B), 则称A、B相互独立.答:不是的.因为条件概率的定义为 P(A|B)=P(AB)/P(B) 或 P(B|A)=P(AB)/P(A)自然要求P(A)0, P(B)0, 而定义1不存在这个附加条件, 也就是说,P(AB)=P(A)P(B)对于P(A)=0或P(B)=0也是成立的. 事实上, 若P(A)=0由0P(AB)P(A)=0可知P(AB)=0故 P(AB)=P(A)P(B).因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.3.3.对任意事件A、B, 是否都有 P(AB)P(A)P(A+B)P(A)+P(B).答:是的.由于 P(A+B)=P(A)+P(B)-P(AB) (*)因为 P(AB)0, 故 P(A+B)P(A)+P(B).由P(AB)=P(A)P(B|A), 因为0P(B|A)1,故 P(AB)P(A);同理P(AB)P(B), 从而 P(B)-P(AB)0, 由(*)知 P(A+B)P(A).原命题得证.3.4.在引入条件概率的讨论中, 曾出现过三个概率: P(A|B), P(B|A), P(AB). 从事件的角度去考察, 在A、B相容的情况下, 它们都是下图中标有阴影的部分, 然而从概率计算的角度看, 它们却是不同的. 这究竟是为什么?答:概率的不同主要在于计算时所取的样本空间的差别:P(A|B)的计算基于附加样本空间B;P(B|A)的计算基于附加样本空间A;P(AB)的计算基于原有样本空间. 3.5.在n个事件的乘法公式: P(A1A2An)=P(A1)P(A2|A1)P(A3|A1A2)P(An|A1A2An-1)中,涉及那么多条件概率, 为什么在给出上述乘法公式时只提及P(A1A2An-1)0呢? 答:按条件概率的本意, 应要求P(A1)0, P(A1A2)0, , P(A1A2An-2)0, P(A1A2An-1)0.事实上, 由于A1A2A3An-2 A1A2A3An-2An-1, 从而便有P(A1A2An-2) P(A1A2An-1)0. 这样, 除P(A1A2An-1)0作为题设外, 其余条件概率所要求的正概率, 如P(A1A2An-2) 0, , P(A1A2) 0, P(A1)0便是题设条件P(A1A2An-1)0的自然结论了.3.6.计算P(B)时, 如果事件B的表达式中有积又有和, 是否就必定要用全概率公式.答:不是. 这是对全概率公式的形式主义的认识, 完全把它作为一个”公式”来理解是不对的. 其实, 我们没有必要去背这个公式, 应着眼于A1,A2,An的结构. 事实上, 对于具体问题, 若能设出n个事件Ai, 使之满足 (*)就可得 . (*)这样就便于应用概率的加法公式和乘法公式.因此, 能否使用全概率公式, 关键在于(*)式, 而要有(*)式, 关键又在于适当地对进行一个分割, 即有(*)式.3.7.设P(A)0, P(B)0, 因为有(1)若A、B互不相容, 则A、B一定不独立.(2)若A、B独立, 则A、B一定不互不相容.故既不互不相容又不独立的事件是不存在的. 上述结论是否正确.答:不正确. 原命题中的结论(1)(2)都是正确的. 但是由(1)(2)(它们互为逆否命题, 有其一就可以了)只能推出在P(A)0, P(B)0的前提下, 事件A、B既互不相容又独立是不存在的, 并不能推出“A、B既不独立又不互不相容是不存在的”. 事实上, 恰恰相反, 既不互不相容又不独立的事件组是存在的, 下面举一例.5个乒乓球(4新1旧), 每次取一个, 无放回抽取三次, 记Ai=第i次取到新球, i=1, 2, 3. 因为是无放回抽取, 故A1、A2、A3互相不独立, 又A1A2A3=三次都取到新球, 显然是可能发生的, 即A1、A2、A3可能同时发生, 因此A1、A2、A3不互不相容.3.8.事件A、B的“对立”与“互不相容”有什么区别和联系? 事件A、B “独立”与“互不相容”又有什么区别和联系?答:“对立”与“互不相容”区别和联系, 从它们的定义看是十分清楚的, 大体上可由如下的命题概括: “对立” “互不相容”, 反之未必成立.至于“独立”与“互不相容”的区别和联系, 并非一目了然.事件的互不相容性只考虑它们是否同时发生,是纯粹的事件的关系, 丝毫未涉及它们的概率, 其关系可借助图直观显示.事件的独立性是由概率表述的, 即当存在概率关系P(A|B)=P(A)或P(B|A)=P(B)时, 称A、B是相互独立的.它们的联系可由下述命题概括: 对于两个非不可能事件A、B, 则有“A、B互不相容” “A、B不独立”. 其等价命题是: 在P(A)0与P(B)0下, 则有“A、B独立” “A、B不互不相容”(相容). 注意, 上述命题的逆命题不成立.3.9.设A、B为两个事件,若 0P(A)1, 0P(B)1. (*)则A、B相互独立, A、B互不相容, , 这三种情形中的任何两种不能同时成立.答:在条件(*)下当A、B相互独立时, 有 P(AB)=P(A)P(B);当A、B互不相容时, 有 P(AB)P(A)P(B). 在条件(*)下, 上述三式中的任何两个不能同时成立. 因此, A、B相互独立, A、B互不相容, 这三种情形中的任何两种不能同时成立.此结论表明: 在条件(*)下,若两个事件相互独立时, 必不互不相容,也不一个包含另一个,而只能是相容了.3.10.证明: 若P(A)=0或P(A)=1, 则A与任何事件B相互独立.答:若P(A)=0, 又, 故0P(AB)P(A)=0.于是P(AB)=0=P(A)P(B),所以A与任何事件B相互独立.若P(A)=1, 则 .由前面所证知, 与任何事件B相互独立. 再由事件独立性的性质知, 与B相互独立, 即A与B相互独立.另种方法证明: 由P(A)=1知 , 进而有. 又 且AB与互不相容, 故 . 即A与B相互独立.3.11.设A、B是两个基本事件, 且0P(A)0, , 问事件A与B是什么关系?解1由已知条件 可得 .由比例性质, 得 .所以 P(AB)=P(A)P(B).因此事件A与B相互独立.解2由 得 .因而 .又 ,所以 P(B|A)=P(B).因此事件A与B相互独立.3.12.是不是无论什么情况, 小概率事件决不会成为必然事件.答:不是的. 我们可以证明, 随机试验中, 若A为小概率事件, 不妨设P(A)=(01为不论多么小的实数 ), 只要不断地独立地重复做此试验, 则A迟早要发生的概率为1. 事实上, 设Ak=A在第k次试验中发生, 则P(Ak)=, , 在前n次试验中A都不发生的概率为: . 于是在前n次试验中, A至少发生一次的概率为 . 如果把试验一次接一次地做下去, 即让n, 由于01, 则当n时, 有pn1.以上事实在生活中是常见的, 例如在森林中吸烟, 一次引起火灾的可能性是很小的, 但如果很多人这样做, 则迟早会引起火灾.3.13.只要不是重复试验, 小概率事件就可以忽视.答:不正确. 小概率事件可不可以忽视, 要由事件的性质来决定, 例如在森林中擦火柴有1%的可能性将导致火灾是不能忽视的, 但火柴有1%的可能性擦不燃是不必在意的.3.14.重复试验一定是独立试验, 理由是: 既然是重复试验就是说每次试验的条件完全相同, 从而试验的结果就不会互相影响, 上述说法对吗?答:不对. 我们举一个反例就可以证明上述结论是错误的.一个罐子中装有4个黑球和3个红球, 随机地抽取一个之后, 再加进2个与抽出的球具有相同颜色的球, 这种手续反复进行, 显然每次试验的条件是相同的. 每抽取一次以后, 这时与取出球有相同颜色的球的数目增加,而与取出球颜色不同的球的数目保持不变,从效果上看,每一次取出的球是什么颜色增加了下一次也取到这种颜色球的概率,因此这不是独立试验,此例是一个如同传染病现象的模型,每一次传染后都增加再传染的概率.3.15.伯努利概型的随机变量是不是都服从二项分布.答:不一定. 例如某射手每次击中目标的概率是p,现在连续向一目标进行射击,直到射中为止. 此试验只有两个可能的结果:A=命中; =未命中,且P(A)=p. 并且是重复独立试验,因此它是伯努利试验(伯努利概型),设Xk=第k次射中,Xk显然是一个随机变量,但 P(Xk=k)=qk-1p,k=1,2,,其中q=p-1,可见Xk是服从参数为p的几何分布,而不是二项分布.3.16.某人想买某本书, 决定到3个新华书店去买, 每个书店有无此书是等可能的. 如有, 是否卖完也是等可能的. 设3个书店有无此书, 是否卖完是相互独立的. 求此人买到此本书的概率.答:(37/64).3.17.在空战中, 甲机先向乙机开火, 击落乙机的概率是0.2; 若乙机未被击落, 就进行还击, 击落甲机的概率是0.3, 则再进攻乙机, 击落乙机的概率是0.4. 在这几个回合中,(1)甲机被击落的概率是多少?(2)乙机被击落的概率是多少?答:以A表示事件“第一次攻击中甲击落乙”, 以B表示事件“第二次攻击中乙击落甲”, 以C表示事件“第三次攻击中甲击落乙”.(1)甲机被击落只有在第一次攻击中甲未击落乙才有可能, 故甲机被击落的概率为 . (2)乙机被击落有两种情况. 一是第一次攻击中甲击落乙, 二是第三次攻击中甲击落乙, 故乙机被击落的概率是 =0.2+(1-0.2)(1-0.3)0.4=0.424.3.18.某个问题, 若甲先答, 答对的概率为0.4; 若甲答错, 由乙答, 答对的概率为0.5. 求问题由乙答出的概率.答:(0.3)3.19.有5个人在一星期内都要到图书馆借书一次, 一周内某天借书的可能性相同, 求 (1)5个人都在星期天借书的概率; (2)5个人都不在星期天借书的概率; (3)5个人不都在星期天借书的概率.答: (1)(1/75); (2)(65/77); (3)(1-1/75).窗体顶端1. 从1, 2, 3, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 二、例题解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).根据公式 而P(B)=3/15=1/5 , , P(A|B)=9/14.窗体底端窗体顶端2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”,设事件B表示“掷出的三个点数都不一样”.则显然所要求的概率为P(A|B).根据公式 , , P(A|B)=1/2.3. 袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件Ai表示“第i次取到白球”. (i=1,2,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3,由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3.而 P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/4 .由数学归纳法可以知道 P(A1A2AN)=1/(N+1).窗体底端窗体顶端4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”,事件B表示“最后取到的是白球”.根据题意 : P(B|A)=5/12 , , P(A)=1/2. . 窗体底端窗体顶端5. 有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件Ai表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 . 事件B表示“从乙袋中取到的是白球”. 显然A0, A1, A2构成一完备事件组,且根据题意 P(A0)=1/10 , P(A1)=3/5 , P(A2)=3/10 ; P(B|A0)=2/5 , P(B|A1)=1/2 , P(B|A2)=3/5 ;由全概率公式P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/51/10+1/23/5+3/53/10=13/25.6. 袋中装有编号为1, 2, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则 表示“第一次取到的是非1号球”;事件B表示“最后取到的是2号球”.显然 P(A)=1/N, , 且 P(B|A)=1/(N-1), ; =1/(N-1)1/N+1/N(N-1)/N=(N2-N+1)/N2(N-1).7. 袋中装有8只红球 , 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.(1)取出的两只球都是红球; (2)取出的两只球都是黑球; (3)取出的两只球一只是红球,一只是黑球; (4)第二次取出的是红球. 解.设事件A1表示“第一次取到的是红球”,设事件A2表示“第二次取到的是红球”.(1)要求的是事件A1A2的概率.根据题意 P(A1)=4/5, , P(A2|A1)=7/9, P(A1A2)=P(A1)P(A2|A1)=4/57/9=28/45. (2)要求的是事件的概率. 根据题意: , , . (3)要求的是取出一只红球一只黑球,它包括两种情形,即求事件 的概率. , , , , . (4)要求第二次取出红球,即求事件A2的概率. 由全概率公式 : =7/94/5+8/91/5=4/5. 8. 某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. 解.设事件A表示“射手能通过选拔进入比赛”,设事件Bi表示“射手是第i级射手”.(i=1,2,3,4) 显然, B1、B2、B3、B4构成一完备事件组,且 P(B1)=4/20, P(B2)=8/20, P(B3)=7/20, P(B4)=1/20; P(A|B1)=0.9, P(A|B2)=0.7, P(A|B3)=0.5, P(A|B4)=0.2. 由全概率公式得到 P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4)P(B4)=0.94/20+0.78/20+0.57/20+0.21/20=0.645.窗体底端窗体顶端9. 轰炸机轰炸某目标,它能飞到距目标400、200、100(米)的概率分别是0.5、0.3、0.2,又设它在距目标400、200、100(米)时的命中率分别是0.01、0.02、0.1 .求目标被命中的概率为多少? 解.设事件A1表示“飞机能飞到距目标400米处”,设事件A2表示“飞机能飞到距目标200米处”,设事件A3表示“飞机能飞到距目标100米处”,用事件B表示“目标被击中”.由题意, P(A1)=0.5, P(A2)=0.3, P(A3)=0.2, 且A1、A2、A3构成一完备事件组. 又已知 P(B|A1)=0.01, P(B|A2)=0.02, P(B|A3)=0.1. 由全概率公式得到 : P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=0.010.5+0.020.3+0.10.2=0.031. 10. 加工某一零件共需要4道工序,设第一第二第三第四道工序的次品率分别为2%3%5%3%, 假定各道工序的加工互不影响, 求加工出零件的次品率是多少? 解.设事件Ai表示“第i道工序出次品”, i=1,2,3,4 因为各道工序的加工互不影响,因此Ai是相互独立的事件. P(A1)=0.02, P(A2)=0.03, P(A3)=0.05, P(A4)=0.03, 只要任一道工序出次品,则加工出来的零件就是次品.所以要求的是(A1+A2+A3+A4)这个事件的概率. 为了运算简便,我们求其对立事件的概率 =(1-0.02)(1-0.03)(1-0.05)(1-0.03)=0.876. P(A1+A2+A3+A4)=1-0.876=0.124. 窗体底端窗体顶端11. 某人过去射击的成绩是每射5次总有4次命中目标, 根据这一成绩, 求 (1)射击三次皆中目标的概率; (2)射击三次有且只有2次命中目标的概率; (3)射击三次至少有二次命中目标的概率. 解.设事件Ai表示“第i次命中目标”, i=1,2,3 根据已知条件 P(Ai)=0.8, ,i=1,2,3 某人每次射击是否命中目标是相互独立的,因此事件Ai是相互独立的 . (1)射击三次皆中目标的概率即求P(A1A2A3). 由独立性: P(A1A2A3)=P(A1)P(A2)P(A3)=0.83=0.512. (2)“射击三次有且只有2次命中目标”这个事件用B表示. 显然 ,又根据独立性得到: . (3)“射击三次至少有2次命中目标”这个事件用C表示. 至少有2次命中目标包括2次和3次命中目标,所以C=B+A1A2A3 P(C)=P(B)+P(A1A2A3)=0.384+0.512=0.896. 12. 三人独立译某一密码, 他们能译出的概率分别为1/3, 1/4, 1/5, 求能将密码译出的概率. 解.设事件Ai表示“第i人能译出密码”, i=1,2,3. 由于每一人是否能译出密码是相互独立的,最后只要三人中至少有一人能将密码译出,则密码被译出,因此所求的概率为P(A1+A2+A3). 已知P(A1)=1/3, P(A2)=1/4, P(A3)=1/5, 而 =(1-1/3)(1-1/4)(1-1/5)=0.4. P(A1+A2+A3)=1-0.4=0.6. 窗体底端窗体顶端13. 用一门大炮对某目标进行三次独立射击, 第一、二、三次的命中率分别为0.4、0.5、0.7, 若命中此目标一、二、三弹, 该目标被摧毁的概率分别为0.2、0.6和0.8, 试求此目标被摧毁的概率. 解.设事件Ai表示“第i次命中目标”, i=1,2,3. 设事件Bi表示“目标被命中i弹”, i=0,1,2,3. 设事件C表示“目标被摧毁”. 由已知P (A1)=0.4, P(A2)=0.5, P(A3)=0.7; P(C|B0)=0, P(C|B1)=0.2, P(C|B2)=0.6, P(C|B3)=0.8. 又由于三次射击是相互独立的,所以, =0.60.50.7+0.60.50.3+0.40.50.3=0.36, =0.60.50.7+0.40.50.3+0.40.50.7=0.41, . 由全概率公式得到 P(C)=P(C|B0)P(B0)+P(C|B1)P(B1)+P(C|B2)P(B2)+P(C|B3)P(B3)=00.09+0.20.36+0.60.41+0.80.14=0.43.三、练习题 1已知P(B|A)=,P(A)=,则P(AB)=( )AB.CD.2由“0”、“1” 组成的三位数码组中,若用A表示“第二位数字为0”的事件,用B表示“第一位数字为0”的事件,则P(A|B)=( )A. B. C. D.3某地区气象台统计,该地区下雨的概率是,刮三级以上风的概率为,既刮风又下雨的概率为,则在下雨天里,刮风的概率为( )A.B. C.D.4设某种动物有出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一个20岁的这种动物,问它能活到25岁以上的概率是 .一个口袋内装有2个白球,3个黑球,则(1)先摸出1个白球后放回,再摸出1个白球的概率?(2)先摸出1个白球后不放回,再摸出1个白球的概率?某种元件用满6000小时未坏的概率是,用满10000小时未坏的概率是,现有一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率7某个班级共有学生40人,其中有团员15人,全班分成四个小组,第一小组有学生10人,其中团员4人。如果要在班内任选一人当学生代表(1)求这个代表恰好在第一小组内的概率 (2)求这个代表恰好是团员代表的概率(3)求这个代表恰好是第一小组内团员的概率(4)现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概率8市场上供应的灯泡中,甲厂产品占70,乙厂占30,甲厂产品合格率是95,乙厂合格率是80,则(1)市场上灯泡的合格率是多少?(2)市场上合格品中甲厂占百分之几?(保留两位有效数字)9一个家庭中有两个小孩,已知其中一个是女孩,问这时另一个小孩也是女孩的概率?(每个小孩是男孩和女孩的概率相等)10在一批电子元件中任取一件检查,是不合格品的概率为0.1,是废品的概率为0.01,已知取到了一件不合格品,它不是废品的概率是多少?
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!