2018版高中数学 第二章 概率 2.5.1 离散型随机变量的均值课件 苏教版选修2-3.ppt

上传人:jun****875 文档编号:12717480 上传时间:2020-05-19 格式:PPT 页数:44 大小:1.27MB
返回 下载 相关 举报
2018版高中数学 第二章 概率 2.5.1 离散型随机变量的均值课件 苏教版选修2-3.ppt_第1页
第1页 / 共44页
2018版高中数学 第二章 概率 2.5.1 离散型随机变量的均值课件 苏教版选修2-3.ppt_第2页
第2页 / 共44页
2018版高中数学 第二章 概率 2.5.1 离散型随机变量的均值课件 苏教版选修2-3.ppt_第3页
第3页 / 共44页
点击查看更多>>
资源描述
2.5.1离散型随机变量的均值,第2章2.5随机变量的均值和方差,学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一离散型随机变量的均值或数学期望,设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.,思考1,任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?,答案,答案X5,6,7.,思考2,当X取上述值时,对应的概率分别是多少?,答案,思考3,如何求每个西瓜的平均重量?,答案,(1)数学期望:E(X).(2)性质pi0,i1,2,n;p1p2pn1.(3)数学期望的含义:它反映了离散型随机变量取值的.,离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:,梳理,x1p1x2p2xnpn,平均水平,知识点二两点分布、超几何分布、二项分布的均值,1.两点分布:若X01分布,则E(X).2.超几何分布:若XH(n,M,N),则E(X).3.二项分布:若XB(n,p),则E(X).,p,np,题型探究,命题角度1一般离散型随机变量的均值例1某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得100分,假设这名同学回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;,解答,类型一离散型随机变量的均值,解X的可能取值为300,100,100,300.P(X300)0.230.008,,P(X300)0.830.512,所以X的概率分布如下表:,所以E(X)(300)0.008(100)0.0961000.3843000.512180(分).,(2)求这名同学总得分不为负分(即X0)的概率.,解这名同学总得分不为负分的概率为P(X0)P(X100)P(X300)0.3840.5120.896.,解答,求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(Xk).(3)写出X的分布列.(4)利用均值的定义求E(X).,反思与感悟,跟踪训练1在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?,解答,解设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:,0.2,所以一张彩票的合理价格是0.2元.,命题角度2二项分布与两点分布的均值例2某运动员投篮命中率为p0.6.(1)求投篮1次命中次数X的均值;,解投篮1次,命中次数X的概率分布如下表:,解答,则E(X)0.6.,(2)求重复5次投篮,命中次数Y的均值.,解由题意知,重复5次投篮,命中次数Y服从二项分布,即YB(5,0.6),E(Y)np50.63.,解答,引申探究在重复5次投篮时,命中次数为Y,随机变量5Y2.求E().,解E()E(5Y2)5E(Y)253217.,解答,(1)常见的两种分布的均值设p为一次试验中成功的概率,则两点分布E(X)p;二项分布E(X)np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析相同点:一次试验中要么发生要么不发生.不同点:a.随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值X0,1,2,n.b.试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.,反思与感悟,跟踪训练2根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;,解设该车主购买乙种保险的概率为p,由题意知p(10.5)0.3,解得p0.6.设所求概率为P1,则P11(10.5)(10.6)0.8.故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8.,解答,(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的均值.,解每位车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2.XB(100,0.2),E(X)1000.220.X的均值是20.,解答,命题角度3超几何分布的均值例3一个口袋内有n(n3)个大小相同的球,其中有3个红球和(n3)个白球.已知从口袋中随机取出一个球是红球的概率是不放回地从口袋中随机取出3个球,求取到白球的个数的均值E().,解答,方法一白球的个数可取0,1,2.,方法二取到白球的个数服从参数为N5,M2,n3的超几何分布,,(1)超几何分布模型一般地,在含有M件次品的N件产品中,任取n件,其中含有X件次品,则P(Xk)k0,1,2,m,其中mminM,n,且nN,MN,n,M,NN*.(2)超几何分布均值的计算公式若一个随机变量X的分布列服从超几何分布,则E(X),反思与感悟,跟踪训练3设在15个同类型的零件中有2个次品,每次任取1个,共取3次,并且每次取出后不再放回,若以X表示取出次品的个数,求均值E(X).,解答,方法二由题意可知,X服从N15,M2,n3的超几何分布,,例4甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;,解记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛,结果为甲负”,A表示事件“第4局甲当裁判”.则AA1A2.P(A)P(A1A2)P(A1)P(A2),类型二均值的应用,解答,(2)X表示前4局中乙当裁判的次数,求X的均值.,解X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”.,解答,解答此类题目,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并列出概率分布表,最后利用有关的公式求出相应的概率及均值.,反思与感悟,跟踪训练4某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;,解答,解记事件A1从甲箱中摸出的1个球是红球,A2从乙箱中摸出的1个球是红球,B1顾客抽奖1次获一等奖,B2顾客抽奖1次获二等奖,C顾客抽奖1次能获奖.,故所求概率为,(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的概率分布和均值.,解答,故X的概率分布如下表:,当堂训练,1.现有一个项目,对该项目每投资10万元,一年后利润是1.2万元,1.18万元,1.17万元的概率分别为随机变量X表示对此项目投资10万元一年后的利润,则X的均值为_.,答案,2,3,4,1,解析,1.18,2,3,4,1,解析因为X的所有可能取值为1.2,1.18,1.17,,所以X的概率分布如下表:,2.若p为非负实数,随机变量的概率分布如下表:,答案,2,3,4,1,解析,则E()的最大值为_.,3.设随机变量XB(40,p),且E(X)16,则p_.,答案,2,3,4,1,解析,解析E(X)np40p16,得p0.4.,0.4,4.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n1,2,3,4).现从袋中任取一球,表示所取球的标号.(1)求的概率分布、均值;,2,3,4,1,解答,解的概率分布如下表:,(2)若a4,E()1,求a的值.,2,3,4,1,解答,规律与方法,1.求离散型随机变量的均值的步骤(1)确定离散型随机变量X的取值.(2)写出分布列,并检查分布列的正确与否.(3)根据公式写出均值.2.若X、Y是两个随机变量,且YaXb,则E(Y)aE(X)b;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.,本课结束,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!