吉林大学本科运筹学课件-线性规划与单纯形法.ppt

上传人:max****ui 文档编号:12714787 上传时间:2020-05-18 格式:PPT 页数:122 大小:2.26MB
返回 下载 相关 举报
吉林大学本科运筹学课件-线性规划与单纯形法.ppt_第1页
第1页 / 共122页
吉林大学本科运筹学课件-线性规划与单纯形法.ppt_第2页
第2页 / 共122页
吉林大学本科运筹学课件-线性规划与单纯形法.ppt_第3页
第3页 / 共122页
点击查看更多>>
资源描述
线性规划及单纯形法,LinearProgramming,第一章,Chapter1线性规划(LinearProgramming),LP的数学模型图解法单纯形法单纯形法的进一步讨论人工变量法LP模型的应用,本章主要内容:,线性规划问题的数学模型,1.规划问题,生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。,线性规划通常解决下列两类问题:,(1)当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原标材料、人工、时间等)去完成确定的任务或目标,(2)在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多、利润最大.),线性规划问题的数学模型,例1.1如图所示,如何截取x使铁皮所围成的容积最大?,线性规划问题的数学模型,例1.2某厂生产两种产品,下表给出了单位产品所需资源及单位产品利润,问:应如何安排生产计划,才能使总利润最大?,解:,1.决策变量:设产品I、II的产量分别为x1、x2,2.目标函数:设总利润为z,则有:maxz=2x1+x2,3.约束条件:,线性规划问题的数学模型,例1.3已知资料如下表所示,问如何安排生产才能使利润最大?或如何考虑利润大,产品好销。,解:,1.决策变量:设产品I、II的产量分别为x1、x2,2.目标函数:设总利润为z,则有:maxz=2x1+3x2,3.约束条件:,线性规划问题的数学模型,例1.4某厂生产三种药物,这些药物可以从四种不同的原料中提取。下表给出了单位原料可提取的药物量,解:,要求:生产A种药物至少160单位;B种药物恰好200单位,C种药物不超过180单位,且使原料总成本最小。,1.决策变量:设四种原料的使用量分别为:x1、x2、x3、x4,2.目标函数:设总成本为zminz=5x1+6x2+7x3+8x4,3.约束条件:,例1.5某航运局现有船只种类、数量以及计划期内各条航线的货运量、货运成本如下表所示:,问:应如何编队,才能既完成合同任务,又使总货运成本为最小?,线性规划问题的数学模型,解:,设:xj为第j号类型船队的队数(j=1,2,3,4),z为总货运成本,则:minz=36x1+36x2+72x3+27x4,线性规划问题的数学模型,线性规划问题的数学模型,2.线性规划的数学模型由三个要素构成,决策变量Decisionvariables目标函数Objectivefunction约束条件Constraints,其特征是:(1)问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;(2)问题的约束条件是一组多个决策变量的线性不等式或等式。,怎样辨别一个模型是线性规划模型?,线性规划问题的数学模型,3.建模条件,(1)优化条件:问题所要达到的目标能用线型函数描述,且能够用极值(max或min)来表示;,(2)限定条件:达到目标受到一定的限制,且这些限制能够用决策变量的线性等式或线性不等式表示;,(3)选择条件:有多种可选择的方案供决策者选择,以便找出最优方案。,线性规划问题的数学模型,4.建模步骤,(1)确定决策变量:即需要我们作出决策或选择的量。一般情况下,题目问什么就设什么为决策变量;,(2)找出所有限定条件:即决策变量受到的所有的约束;,(3)写出目标函数:即问题所要达到的目标,并明确是max还是min。,线性规划问题的数学模型,目标函数:,约束条件:,5.线性规划数学模型的一般形式,简写为:,线性规划问题的数学模型,向量形式:,其中:,线性规划问题的数学模型,矩阵形式:,其中:,线性规划问题的数学模型,6.线性规划问题的标准形式,特点:(1)目标函数求最大值(有时求最小值)(2)约束条件都为等式方程,且右端常数项bi都大于或等于零(3)决策变量xj为非负。,线性规划问题的数学模型,(2)如何化标准形式,目标函数的转换,如果是求极小值即,则可将目标函数乘以(-1),可化为求极大值问题。,也就是:令,可得到上式。,即,若存在取值无约束的变量,可令其中:,变量的变换,线性规划问题的数学模型,约束方程的转换:由不等式转换为等式。,称为松弛变量,称为剩余变量,常量bi0的变换:约束方程两边乘以(1),线性规划问题的数学模型,例1.6将下列线性规划问题化为标准形式,用替换,且,解:()因为x3无符号要求,即x3取正值也可取负值,标准型中要求变量非负,所以,线性规划问题的数学模型,(2)第一个约束条件是“”号,在“”左端加入松驰变量x4,x40,化为等式;(3)第二个约束条件是“”号,在“”左端减去剩余变量x5,x50;(4)第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右端常数项化为正数;(5)目标函数是最小值,为了化为求最大值,令z=-z,得到maxz=-z,即当z达到最小值时z达到最大值,反之亦然;,线性规划问题的数学模型,标准形式如下:,例1.7将下列线性规划问题化为标准形式,为无约束(无非负限制),线性规划问题的数学模型,解:用替换,且,,将第3个约束方程两边乘以(1),将极小值问题反号,变为求极大值,标准形式如下:,引入变量,线性规划问题的数学模型,例1.8将线性规划问题化为标准型,解:,线性规划问题的数学模型,例1.9将线性规划问题化为标准型,解:,Minf=-3x1+5x2+8x3-7x4s.t.2x1-3x2+5x3+6x4284x1+2x2+3x3-9x4396x2+2x3+3x4-58x1,x3,x40;x2无约束,Maxz=3x15x2+5x2”8x3+7x4s.t.2x13x2+3x2”+5x3+6x4+x5=284x1+2x2-2x2”+3x3-9x4-x6=39-6x2+6x2”-2x3-3x4-x7=58x1,x2,x2”,x3,x4,x5,x6,x70,线性规划问题的数学模型,线性规划问题的数学模型,7.线性规划问题的解,线性规划问题,求解线性规划问题,就是从满足约束条件(2)、(3)的方程组中找出一个解,使目标函数(1)达到最大值。为价值系数,为技术系数,线性规划问题的数学模型,可行解:满足约束条件、的解为可行解。所有可行解的集合为可行域。最优解:使目标函数达到最大值的可行解。基:设A为约束条件的mn阶系数矩阵(m0,40,10,换出行,将3化为1,5/3,1,18,0,1/3,0,1/3,10,1,1/3,30,30,0,5/3,0,4/3,乘以1/3后得到,1,0,3/5,1/5,18,0,1,1/5,2/5,4,0,0,1,1,单纯形法的计算步骤,例1.14用单纯形法求解,解:将数学模型化为标准形式:,不难看出x4、x5可作为初始基变量,列单纯形表计算。,单纯形法的计算步骤,20,x2,2,1/3,1,5,0,1,20,75,3,0,17,1,3,1/3,0,9,0,2,25,60,x1,1,1,0,17/3,1/3,1,25,0,1,28/9,-1/9,2/3,35/3,0,0,-98/9,-1/9,-7/3,变成标准型,单纯形法的计算步骤,例1.15用单纯形法求解,约束方程的系数矩阵,为基变量,为非基变量,I为单位矩阵且线性独立,单纯形法的计算步骤,判断现行的基本可行解是否最优,假如已求得一个基本可行解,将这一基本可行解代入目标函数,可求得相应的目标函数值,其中分别表示基变量和非基变量所对应的价值系数子向量。,单纯形法的矩阵初等行变换实质,要判定是否已经达到最大值,只需将代入目标函数,使目标函数用非基变量表示,即:,其中称为非基变量N的检验向量,它的各个分量称为检验数。若N的每一个检验数均小于等于0,即N0,那么现在的基本可行解就是最优解。,定理1最优解判别定理对于线性规划问题若某个基本可行解所对应的检验向量,则这个基本可行解就是最优解。,定理2无穷多最优解判别定理若是一个基本可行解,所对应的检验向量,其中存在一个检验数m+k=0,则线性规划问题有无穷多最优解。,例1.16用单纯形方法求解线性规划问题解:本题的目标函数是求极小化的线性函数,可以令则这两个线性规划问题具有相同的可行域和最优解,只是目标函数相差一个符号而已。,01010,3,x2,2,0012-1,2,x3,0,-,01010,3,x2,2,4/1,10100,4,x3,0,3/1,01010,3,x4,0,_,10100,4,x3,0,0000-1,8,Z,100-21,2,x1,1,100-20,6,Z,2/1,100-21,2,x5,0,12000,0,Z,8/2,12001,8,x5,0,x1x2x3x4x5,b,XB,CB,12000,C,最优解最优值,2/2,3/1,-,因为非基变量x4的检验数4=0,由无穷多最优解判别定理,本例的线性规划问题存在无穷多最优解。事实上若以x4为换入变量,以x3为换出变量,再进行一次迭代,可得以下单纯形表:,最优解最优值最优解的一般表示式,对于极小化的线性规划问题的处理:先化为标准型,即将极小化问题变换为极大化问题,然后利用单纯形方法求解直接利用单纯形方法求解,但是检验是否最优的准则有所不同,即:若某个基本可行解的所有非基变量对应的检验数(而不是),则基本可行解为最优解否则采用最大减少原则(而非最大增加原则)来确定换入变量,即:若则选取对应的非基变量xm+k为换入变量确定了换入变量以后,换出变量仍采用最小比值原则来确定。,单纯形法的计算步骤,学习要点:1.线性规划解的概念以及3个基本定理2.熟练掌握线性规划问题的标准化3.熟练掌握单纯形法的解题思路及求解步骤,单纯形法的进一步讨论人工变量法,人工变量法:前面讨论了在标准型中系数矩阵有单位矩阵,很容易确定一组基可行解。在实际问题中有些模型并不含有单位矩阵,为了得到一组基向量和初基可行解,在约束条件的等式左端加一组虚拟变量,得到一组基变量。这种人为加的变量称为人工变量,构成的可行基称为人工基,用大M法或两阶段法求解,这种用人工变量作桥梁的求解方法称为人工变量法。,单纯形法的进一步讨论人工变量法,例1.17用大M法解下列线性规划,解:首先将数学模型化为标准形式,系数矩阵中不存在单位矩阵,无法建立初始单纯形表。,单纯形法的进一步讨论人工变量法,故人为添加两个单位向量,得到人工变量单纯形法数学模型:,其中:M是一个很大的抽象的数,不需要给出具体的数值,可以理解为它能大于给定的任何一个确定数值;再用前面介绍的单纯形法求解该模型,计算结果见下表。,单纯形法的进一步讨论人工变量法,单纯形法的进一步讨论人工变量法,例1.18用大M法解下列线性规划,解:首先将数学模型化为标准形式,系数矩阵中不存在单位矩阵,无法建立初始单纯形表。,单纯形法的进一步讨论人工变量法,故人为添加两个单位向量,得到人工变量单纯形法数学模型:,其中:M是一个很大的抽象的数,不需要给出具体的数值,可以理解为它能大于给定的任何一个确定数值;再用前面介绍的单纯形法求解该模型,计算结果见下表。,单纯形法的进一步讨论人工变量法,单纯形法的进一步讨论人工变量法,单纯形法的进一步讨论两阶段法,用计算机处理数据时,只能用很大的数代替M,可能造成计算机上的错误,故多采用两阶段法。,第一阶段:在原线性规划问题中加入人工变量,构造如下模型:,对上述模型求解(单纯形法),若=0,说明问题存在基可行解,可以进行第二个阶段;否则,原问题无可行解,停止运算。,单纯形法的进一步讨论两阶段法,第一阶段的线性规划问题可写为:,第一阶段单纯形法迭代的过程见下表(注意:没有化为极大化问题),单纯形法的进一步讨论两阶段法,单纯形法的进一步讨论两阶段法,第二阶段:在第一阶段的最终表中,去掉人工变量,将目标函数的系数换成原问题的目标函数系数,作为第二阶段计算的初始表(用单纯形法计算)。,例:,单纯形法的进一步讨论两阶段法,第二阶段:,最优解为(41900),目标函数Z=2,单纯形法的进一步讨论,通过大法或两阶段法求初始的基本可行解。但是如果在大法的最优单纯形表的基变量中仍含有人工变量,或者两阶段法的辅助线性规划的目标函数的极小值大于零,那么该线性规划就不存在可行解。,无可行解,C,-3-2-1000-M-M,CB,XB,b,x1x2x3x4x5x6x7x8,0-M-M,x4x7x8,643,1111000010-10-101001-100-101,6/1-3/1,Z,-7M,-6-4M,-15-M,-3+M-2+M-1-2M0-M-M00,0-M-2,x4x7x2,343,1021010-110-10-101001-100-101,3/14/1-,Z,Z,-3+M0-3-M0-M-202-M,-3-M-2,x1x7x2,313,1021010-100-3-1-1-11101-100-101,003-3M3-M-M1-M0-1,例,单纯形法的进一步讨论,运算到检验数全负为止,仍含有人工变量,无可行解。,单纯形法的进一步讨论,无最优解与无可行解时两个不同的概念。无可行解是指原规划不存在可行解,从几何的角度解释是指线性规划问题的可行域为空集;无最优解则是指线性规划问题存在可行解,但是可行解的目标函数达不到最优值,即目标函数在可行域内可以趋于无穷大(或者无穷小)。无最优解也称为有限最优解,或无界解。判别方法:无最优解判别定理在求解极大化的线性规划问题过程中,若某单纯形表的检验行存在某个大于零的检验数,但是该检验数所对应的非基变量的系数列向量的全部系数都为负数或零,则该线性规划问题无最优解,无最优解,例试用单纯形法求解下列线性规划问题:解:引入松弛变量x3,x4化为标准型,因但所以原问题无最优解,退化,即计算出的(用于确定换出变量)存在有两个以上相同的最小比值,会造成下一次迭代中由一个或几个基变量等于零,这就是退化(会产生退化解)。为避免出现计算的循环,勃兰特(Bland)提出一个简便有效的规则(摄动法原理):当存在多个时,选下标最小的非基变量为换入变量;(2)当值出现两个以上相同的最小值时,选下标最大的基变量为换出变量。,单纯形法的进一步讨论,例求解下述线性规划问题:解:引入松弛变量化标准型,0,0,0,-24,2,-80,3,0,Z,-5,-3,0,-42,0,-8,0,5,Z,1,0,0,0,1,0,0,1,x3,2,1,1,0,6,0,-24,1,1,x1,3,3,-1,1,30,0,-8,0,3,x5,0,0,-3,0,-42,5,-8,0,0,Z,1,0,0,0,1,0,0,1,x7,0,0,1,0,6,-1,-24,1,0,x1,3,0,-1,1,30,-3,-8,0,0,x5,0,-,1,0,0,0,1,0,0,1,x7,0,0,0,1,0,6,-1,-24,1,0,x6,0,0,0,0,1,36,-4,-32,1,0,x5,0,x7,x6,x5,x4,x3,x2,x1,b,XB,CB,0,0,0,-24,2,-80,3,C,第一次迭代中使用了摄动法原理,选择下标为6的基变量x6离基。,可得最优解maxZ=,,单纯形法的进一步讨论,无穷多最优解,若线性规划问题某个基本可行解所有的非基变量检验数都小于等于零,但其中存在一个检验数等于零,那么该线性规划问题有无穷多最优解。例:最优表:非基变量检验数,所以有无穷多最优解。,单纯形法的进一步讨论,单纯形法的进一步讨论,解的判别:1)唯一最优解判别:最优表中所有非基变量的检验数非零,则线性规划具有唯一最优解。2)多重最优解判别:最优表中存在非基变量的检验数为零,则线性规划具有多重最优解(或无穷多最优解)。3)无界解判别:某个k0且aik(i=1,2,m)则线性规划具有无界解。4)无可行解的判断:当用大M单纯形法计算得到最优解并且存在Ri0时,则表明原线性规划无可行解。5)退化解的判别:存在某个基变量为零的基本可行解。,单纯形法的进一步讨论,单纯性法小结:,A,线性规划模型的应用,一般而言,一个经济、管理问题凡是满足以下条件时,才能建立线性规划模型。,要求解问题的目标函数能用数值指标来反映,且为线性函数存在着多种方案要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述,线性规划模型的应用,常见问题,合理利用线材问题:如何下料使用材最少。配料问题:在原料供应量的限制下如何获取最大利润。投资问题:从投资项目中选取方案,使投资回报最大。产品生产计划:合理利用人力、物力、财力等,使获利最大。劳动力安排:用最少的劳动力来满足工作的需要。运输问题:如何制定调运方案,使总运费最小。,线性规划模型的应用,(1)设立决策变量;(2)明确约束条件并用决策变量的线性等式或不等式表示;(3)用决策变量的线性函数表示目标,并确定是求极大(Max)还是极小(Min);(4)根据决策变量的物理性质研究变量是否有非负性。,建立线性规划模型的过程可以分为四个步骤:,线性规划在经济管理中的应用,1.资源的合理利用,某厂计划在下一生产周期内生产B1,B2,Bn种产品,要消耗A1,A2,Am种资源,已知每件产品所消耗的资源数、每种资源的数量限制以及每件产品可获得的利润如表所示,问如何安排生产计划,才能充分利用现有的资源,使获得的总利润最大?,线性规划在经济管理中的应用,2.生产组织与计划问题,某工厂用机床A1,A2,Am加工B1,B2,Bn种零件。在一个周期内,各机床可能工作的机时(台时),工厂必须完成各种零件的数量、各机床加工每个零件的时间(机时/个)和加工每个零件的成本(元/个)如表所示,问如何安排各机床的生产任务,才能完成加工任务,又使总成本最低?,例1:某厂生产、三种产品,都分别经A、B两道工序加工。设A工序可分别在设备A1和A2上完成,有B1、B2、B3三种设备可用于完成B工序。已知产品可在A、B任何一种设备上加工;产品可在任何规格的A设备上加工,但完成B工序时,只能在B1设备上加工;产品只能在A2与B2设备上加工。加工单位产品所需工序时间及其他各项数据如下表,试安排最优生产计划,使该厂获利最大。,解:设xijk表示产品i在工序j的设备k上加工的数量。约束条件有:,目标是利润最大化,即利润的计算公式如下:这样得到目标函数Max(1.25-0.25)(x111+x112)+(2-0.35)x221+(2.80-0.5)x312-300/6000(5x111+10 x211)-321/10000(7x112+9x212+12x312)-250/4000(6x121+8x221)-783/7000(4x122+11x322)-200/4000(7x123)经整理可得:Max0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121-0.5x221-0.4475x122-1.2304x322-0.35x123,因此该规划问题的模型为:,例2:明兴公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。数据如下表。问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?,线性规划在管理中的应用,解:设x1,x2,x3分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,x4,x5分别为由外协铸造再由本公司机加工和装配的甲、乙两种产品的件数。求xi的利润:利润=售价-各成本之和可得到xi(i=1,2,3,4,5)的利润分别为15、10、7、13、9元。这样我们建立如下的数学模型。目标函数:Max15x1+10 x2+7x3+13x4+9x5约束条件:s.t.5x1+10 x2+7x380006x1+4x2+8x3+6x4+4x5120003x1+2x2+2x3+3x4+2x510000 x1,x2,x3,x4,x50,线性规划在经济管理中的应用,例3:现有一批某种型号的圆钢长8米,需要截取2.5米长的毛坯100根,长1.3米的毛坯200根。问如何才能既满足需要,又能使总的用料最少?,解:为了找到一个省料的套裁方案,必须先设计出较好的几个下料方案。其次要求这些方案的总体能裁下所有各种规格的圆钢,以满足对各种不同规格圆钢的需要并达到省料的目的,为此可以设计出4种下料方案以供套裁用。,3.合理下料问题,线性规划在管理中的应用,设按方案、下料的原材料根数分别为xj(j=1,2,3,4),可列出下面的数学模型:,线性规划在经济管理中的应用,4.合理配料问题,某饲养场用n种饲料B1,B2,Bn配置成含有m种营养成分A1,A2,Am的混合饲料,其余资料如表所示。问应如何配料,才能既满足需要,又使混合饲料的总成本最低?,解:,线性规划在管理中的应用,例4:某人每天食用甲、乙两种食物(如猪肉、鸡蛋),其资料如下:问两种食物各食用多少,才能既满足需要、又使总费用最省?,解:设Xj表示Bj种食物用量,例5某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,数据如下表。问:该厂应如何安排生产,使利润收入为最大?,解:设xij表示第i种(甲、乙、丙)产品中原料j的含量。这样我们建立数学模型时,要考虑:对于甲:x11,x12,x13;对于乙:x21,x22,x23;对于丙:x31,x32,x33;对于原料1:x11,x21,x31;对于原料2:x12,x22,x32;对于原料3:x13,x23,x33;目标函数:利润最大,利润=收入-原料支出约束条件:规格要求4个;供应量限制3个。,Maxz=-15x11+25x12+15x13-30 x21+10 x22-40 x31-10 x33s.t.0.5x11-0.5x12-0.5x130(原材料1不少于50%)-0.25x11+0.75x12-0.25x130(原材料2不超过25%)0.75x21-0.25x22-0.25x230(原材料1不少于25%)-0.5x21+0.5x22-0.5x230(原材料2不超过50%)x11+x21+x31100(供应量限制)x12+x22+x32100(供应量限制)x13+x23+x3360(供应量限制)xij0,i=1,2,3;j=1,2,3,线性规划在管理中的应用,5.人力资源分配问题,例6某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如下表所示:,设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,即能满足工作需要,又使配备司机和乘务人员的人数减少?,解:设xi表示第i班次时开始上班的司机和乘务人员人数。,此问题最优解:x150,x220,x350,x40,x520,x610,一共需要司机和乘务员150人。,例7某部门现有资金200万元,今后五年内考虑给以下的项目投资。已知:项目A:从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B:从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;项目C:需在第三年年初投资,第五年末能收回本利140%,但规定最大投资额不能超过80万元;项目D:需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元;据测定每万元每次投资的风险指数如右表:问:a)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?b)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万元的基础上使得其投资总的风险系数为最小?,解:1)确定决策变量:连续投资问题设xij(i=1-5,j=1、2、3、4)表示第i年初投资于A(j=1)、B(j=2)、C(j=3)、D(j=4)项目的金额。这样我们建立如下的决策变量:Ax11x21x31x41x51Bx12x22x32x42Cx33Dx24,6.投资问题,2)约束条件:第一年:A当年末可收回投资,故第一年年初应把全部资金投出去,于是x11+x12=200;第二年:B次当年末才可收回投资故第二年年初的资金为x11,于是x21+x22+x24=1.1x11;第三年:年初的资金为x21+x12,于是x31+x32+x33=1.1x21+1.25x12;第四年:年初的资金为x31+x22,于是x41+x42=1.1x31+1.25x22;第五年:年初的资金为x41+x32,于是x51=1.1x41+1.25x32;B、C、D的投资限制:xi230(I=1、2、3、4),x3380,x241003)目标函数及模型:a)Maxz=1.1x51+1.25x42+1.4x33+1.55x24s.t.x11+x12=200 x21+x22+x24=1.1x11;x31+x32+x33=1.1x21+1.25x12;x41+x42=1.1x31+1.25x22;x51=1.1x41+1.25x32;xi230(I=1、2、3、4),x3380,x24100 xij0(i=1、2、3、4、5;j=1、2、3、4)b)Minf=(x11+x21+x31+x41+x51)+3(x12+x22+x32+x42)+4x33+5.5x24s.t.x11+x12=200 x21+x22+x24=1.1x11;x31+x32+x33=1.1x21+1.25x12;x41+x42=1.1x31+1.25x22;x51=1.1x41+1.25x32;xi230(I=1、2、3、4),x3380,x241001.1x51+1.25x42+1.4x33+1.55x24330 xij0(i=1、2、3、4、5;j=1、2、3、4),投资问题(续),
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!