(浙江专用)2019年中考数学总复习 第八章 数学思想方法 8.4 转化思想(试卷部分)课件.ppt

上传人:tian****1990 文档编号:12167668 上传时间:2020-05-07 格式:PPT 页数:11 大小:890KB
返回 下载 相关 举报
(浙江专用)2019年中考数学总复习 第八章 数学思想方法 8.4 转化思想(试卷部分)课件.ppt_第1页
第1页 / 共11页
(浙江专用)2019年中考数学总复习 第八章 数学思想方法 8.4 转化思想(试卷部分)课件.ppt_第2页
第2页 / 共11页
(浙江专用)2019年中考数学总复习 第八章 数学思想方法 8.4 转化思想(试卷部分)课件.ppt_第3页
第3页 / 共11页
点击查看更多>>
资源描述
第八章数学思想方法8.4转化思想,中考数学(浙江专用),1.(2015山西,5,3分)我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程3x=0或x-2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想,好题精练,答案A将高次方程问题转化为低次方程问题求解,将复杂问题转化为简单问题求解,将未知问题转化为已知问题求解,体现了转化思想,故选A.,2.如图,在大长方形ABCD中,放入六个相同的小长方形,则图中阴影部分面积为()A.16B.44C.93D.140,答案B设小长方形的宽和长分别为x,y则由图形得解得则阴影部分面积为1410-628=140-96=44.,3.设m2+m-1=0,则代数式m3+2m2+2017的值为()A.2016B.2017C.2018D.2020,答案Cm2+m-1=0,m2+m=1,则m3+2m2+2017=m(m2+m)+m2+2017=m2+m+2017=1+2017=2018.,4.如图,ABC经过平移后得到ABC,若四边形ACDA的面积为6cm2,则阴影部分的面积为cm2.,答案6,解析由平移性质可得,ABC的面积等于ABC的面积,阴影部分的面积等于四边形ACDA的面积,为6cm2.,5.如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A和B是这个台阶的两个相对端点,A点处有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线的长度是寸.,答案73,解析将立体图形转化为平面图形,展开后变为长方形,根据题意得,C=90,BC=3(10+6)=48,AB=73.,6.(2014浙江舟山,15)三个同学对问题“若方程组的解是求方程组的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决.”参考他们的讨论,你认为这个题目的解应该是.,答案,解析将原方程组变形为则,7.(2018陕西,25,12分)问题提出(1)如图,在ABC中,A=120,AB=AC=5,则ABC的外接圆半径R的值为.问题探究(2)如图,O的半径为13,弦AB=24,M是AB的中点,P是O上一动点,求PM的最大值.问题解决(3)如图所示,AB、AC、是某新区的三条规划路,其中,AB=6km,AC=3km,BAC=60,所对的圆心角为60.新区管委会想在路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按PEFP的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本,要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计),解析(1)5(2分)详解:如图,设O是ABC的外接圆的圆心,OA=OB=OC,又AB=AC,AOBAOC,BAO=CAO,BAC=120,BAO=60,ABO是等边三角形,AB=OA=OB=5.即ABC的外接圆半径R的值为5.(2)如图,连接MO,并延长与O相交于点P,连接OA,OP.,M是弦AB的中点,OMAB,AM=AB=12.在RtAOM中,OM=5.(4分)PMOM+OP=OM+OP=MP=18,当点P运动到P时,PM取得最大值,为18.(5分)(3)如图,设P为上任意一点,分别作点P关于直线AB、AC的对称点P1、P2,连接P1P2,分别与AB、AC相交于点E、F,连接PE,PF,PEF的周长=P1E+EF+P2F=P1P2,对于点P及分别在AB、AC上的任意点E、F,有PEF的周长PEF的周长=P1P2.即PEF周长的最小值为P1P2的长.(7分)连接AP1,AP,AP2,则AP1=AP=AP2,P1AB=PAB,P2AC=PAC,P1AP2=2BAC=120,P1P2=AP1=AP.(8分)要使P1P2最短,只要AP最短即可.设O为所在圆的圆心,连接OB、OC、OP、OA,且OA与相交于点P,则AP+POAO.APAP.(9分)连接BC,易证ACB为直角三角形,且ABC=30,ACB=90,BC=ACtan60=3km.BOC=60,OB=OC,BO=BC=3km,OBC=60,ABO=ABC+OBC=90.,在RtABO中,AO=3km.(11分)AP=(AO-OP)=(3-3)=(3-9)km.P1P2的最小值为AP=(3-9)km.PE+EF+FP的最小值为(3-9)km.(12分),思路分析(1)设O是ABC的外接圆的圆心,根据全等三角形的判定与性质和圆的半径相等可证ABO是等边三角形,所以AB=OA=OB=5;(2)当PMAB时,PM有最大值,根据垂径定理可得AM=AB=12,再根据勾股定理求得OM=5,进而由PMOM+OP=OM+OP=MP=18得解;(3)分别以AB、AC所在的直线为对称轴,作出P关于AB的对称点为P1,关于AC的对称点为P2,易得PEF的周长为P1P2的长,根据P1P2=AP,可知要使P1P2最短,只要AP最短,OA与交于点P,此时使得线段PE、EF、FP之和最短,然后先判定ABC为直角三角形,求出BC的长,在RtABO中由勾股定理求出AO的长,进而求出AP的值,最后求得PE+EF+FP的最小值.,难点分析本题难点在于第(3)问如何确定P点的位置及何时PE+EF+FP取得最小值.读懂题目信息也就明确了可以利用轴对称确定最短路线问题,同时结合圆半径和线段OA的长度求出AP的最小值.,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!