资源描述
2017高考数学一轮复习 第十七章 坐标系与参数方程 17.1 坐标系与极坐标方程对点训练 理1若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y1x(0x1)的极坐标方程为()A,0B,0Ccossin,0Dcossin,0答案A解析由xcos,ysin,y1x可得sin1cos,即,再结合线段y1x(0x1)在极坐标系中的情形,可知.因此线段y1x(0x1)的极坐标方程为,0.2以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位已知直线l的参数方程是(t为参数),圆C的极坐标方程是4cos,则直线l被圆C截得的弦长为()A. B2C. D2答案D解析由消去t得xy40,C:4cos24cos,C:x2y24x,即(x2)2y24,C(2,0),r2.点C到直线l的距离d,所求弦长22.故选D.3.在极坐标系中,点到直线(cossin)6的距离为_答案1解析点的直角坐标为(1,),直线(cossin)6的直角坐标方程为xy60,所以点(1,)到直线的距离d1.4在极坐标系中,圆8sin上的点到直线(R)距离的最大值是_答案6解析圆8sin即28sin,化为直角坐标方程为x2(y4)216,直线,则tan,化为直角坐标方程为xy0,圆心(0,4)到直线的距离为2,所以圆上的点到直线距离的最大值为246.5已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cos24,则直线l与曲线C的交点的极坐标为_答案(2,)解析直线l的普通方程为yx2,曲线C的直角坐标方程为x2y24(x2),故直线l与曲线C的交点为(2,0),对应极坐标为(2,)6在平面直角坐标系中,倾斜角为的直线l与曲线C:(为参数)交于A,B两点,且|AB|2.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是_答案(cossin)1解析曲线C的普通方程为(x2)2(y1)21,设直线l的方程为yxb,弦长|AB|2,圆心(2,1)到直线l的距离d0,圆心在直线l上,l:yx1,令xcos,ysin,直线l的极坐标方程为(cossin)1.7在以O为极点的极坐标系中,圆4sin和直线sina相交于A,B两点,若AOB是等边三角形,则a的值为_答案3解析由4sin可得24sin,所以x2y24y.所以圆的直角坐标方程为x2y24y,其圆心为C(0,2),半径r2;由sina,得直线的直角坐标方程为ya,由于AOB是等边三角形,所以圆心C是等边三角形OAB的中心,若设AB的中点为D(如图)则CDCBsin3021,即a21,所以a3.8.在直角坐标系xOy中,直线C1:x2,圆C2:(x1)2(y2)21,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为(R),设C2与C3的交点为M,N,求C2MN的面积解(1)因为xcos,ysin,所以C1的极坐标方程为cos2,C2的极坐标方程为22cos4sin40.(2)将代入22cos4sin40,得2340,解得12,2.故12,即|MN|.由于C2的半径为1,所以C2MN的面积为.9已知圆C的极坐标方程为22sin40,求圆C的半径解以极坐标系的极点为平面直角坐标系的原点O,以极轴为x轴的正半轴,建立直角坐标系xOy.圆C的极坐标方程为2240,化简,得22sin2cos 40.则圆C的直角坐标方程为x2y22x2y40,即(x1)2(y1)26.所以圆C的半径为.3
展开阅读全文