资源描述
专题一 集合、常用逻辑用语、向量、复数、算法、合情推理、不等式及线性规划 第三讲 不等式及线性规划适考素能特训 文一、选择题12016青海西宁二模已知a,b,cR,那么下列命题中正确的是()A若ab,则ac2bc2B若,则abC若a3b3且abD若a2b2且ab0,则答案C解析当c0时,可知A不正确;当cb3且ab0且b成立,C正确;当a0且b0,bcad0,则0;若ab0,0,则bcad0;若bcad0,0,则ab0.其中正确命题的个数是()A0 B1C2 D3答案D解析对于,ab0,bcad0,0,正确;对于,ab0,又0,即0,bcad0,正确;对于,bcad0,又0,即0,ab0,正确故选D.32015浙江金华期中若对任意的x0,1,不等式1kx1lx恒成立,则一定有()Ak0,l Bk0,lCk,l Dk,l答案D解析当k1且x0,1时,1kx1x1,2,不等式1kx不恒成立,可排除A、B;当k且x0,1时,1kx1x,不等式1kx不恒成立,排除C,故选D.4已知函数f(x)若|f(x)|ax,则a的取值范围是()A(,0 B(,1C2,1 D2,0答案D解析由题意作出y|f(x)|的图象:当a0时,yax与yln (x1)的图象在x0时必有交点,所以a0.当x0时,|f(x)|ax显然成立;当x0时,|f(x)|x22x,|f(x)|ax恒成立ax2恒成立,又x20时,x2x2,00,x,y满足约束条件若z2xy的最小值为1,则a()A. B.C1 D2答案B解析画出可行域,如图所示,由得A(1,2a),则直线yz2x过点A(1,2a)时,z2xy取最小值1,故212a1,解得a.72015陕西高考某企业生产甲、乙两种产品均需用A,B两种原料已知生产1吨每种产品所需原料及每天原料的可用限额如表所示如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨)3212B(吨)128A.12万元 B16万元C17万元 D18万元答案D解析设该企业每天生产甲产品x吨、乙产品y吨,每天获得的利润为z万元,则有z3x4y,由题意得x,y满足:不等式组表示的可行域是以O(0,0),A(4,0),B(2,3),C(0,4)为顶点的四边形及其内部根据线性规划的有关知识,知当直线3x4yz0过点B(2,3)时,z取最大值18,故该企业每天可获得最大利润为18万元82016山东潍坊模拟一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c(0,1),已知他投篮一次得分的均值为2,的最小值为()A. B.C. D.答案D解析由题意得3a2b2,3 32,当且仅当a,b时取等号故选D.92016兰州双基过关已知AC、BD为圆O:x2y24的两条互相垂直的弦,且垂足为M(1,),则四边形ABCD面积的最大值为()A5 B10C15 D20答案A解析如图,作OPAC于P,OQBD于Q,则OP2OQ2OM23,AC2BD24(4OP2)4(4OQ2)20.又AC2BD22ACBD,则ACBD10,S四边形ABCDACBD105,当且仅当ACBD时等号成立,四边形ABCD面积的最大值为5.102016山东菏泽一模已知直线axbyc10(b,c0)经过圆x2y22y50的圆心,则的最小值是()A9 B8C4 D2答案A解析圆x2y22y50化成标准方程,得x2(y1)26,所以圆心为C(0,1)因为直线axbyc10经过圆心C,所以a0b1c10,即bc1.因此(bc)5.因为b,c0,所以2 4.当且仅当时等号成立由此可得b2c,且bc1,即b,c时,取得最小值9.二、填空题11已知f(x)是定义域为R的偶函数,当x0时,f(x)x24x.那么,不等式f(x2)5的解集是_答案(7,3)解析f(x)是偶函数,f(x)f(|x|)又x0时,f(x)x24x,不等式f(x2)5f(|x2|)5|x2|24|x2|5(|x2|5)(|x2|1)0|x2|50|x2|55x257x0,b0)的最大值为10,则a2b2的最小值为_答案解析因为a0,b0,所以由可行域得,当目标函数zaxby 过点(4,6)时取最大值,则4a6b10.a2b2的几何意义是直线4a6b10上任意一点到点(0,0)的距离的平方,那么最小值是点(0,0)到直线4a6b10距离的平方,即a2b2的最小值是.132015辽宁沈阳质检若直线l:1(a0,b0)经过点(1,2),则直线l在x轴和y轴上的截距之和的最小值是_答案32解析直线l在x轴上的截距为a,在y轴上的截距为b.求直线l在x轴和y轴上的截距之和的最小值即求ab的最小值由直线l经过点(1,2)得1.于是ab(ab)1(ab)3,因为2 2,所以ab32.142016广东实验中学模拟已知函数f(x)若对任意的xR,不等式f(x)m2m恒成立,则实数m的取值范围是_答案1,)解析对于函数f(x)当x1时,f(x)2;当x1时,f(x)logx0.则函数f(x)的最大值为.则要使不等式f(x)m2m恒成立,则m2m恒成立,即m或m1.
展开阅读全文