资源描述
第2讲不等式选讲1(2016课标全国)已知函数f(x),M为不等式f(x)2的解集(1)求M;(2)证明:当a,bM时,|ab|1ab|.(1)解f(x)当x时,由f(x)2得2x1,所以,1x;当x时,f(x)2;当x时,由f(x)2得2x2,解得x1,所以,x1.所以f(x)2的解集Mx|1x1(2)证明由(1)知,当a,bM时,1a1,1b1,从而(ab)2(1ab)2a2b2a2b21(a21)(1b2)0,即(ab)2(1ab)2,因此|ab|0.(1)当a1时,求不等式f(x)1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围解(1)当a1时,f(x)1化为|x1|2|x1|10.当x1时,不等式化为x40,无解;当1x0,解得x0,解得1x1的解集为.(2)由题设可得,f(x)所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a1,0),C(a,a1),ABC的面积为(a1)2.由题设得(a1)26,故a2.所以a的取值范围为(2,)本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.热点一含绝对值不等式的解法含有绝对值的不等式的解法(1)|f(x)|a(a0)f(x)a或f(x)a;(2)|f(x)|0)af(x)a;(3)对形如|xa|xb|c,|xa|xb|c的不等式,可利用绝对值不等式的几何意义求解例1已知函数f(x)|xa|,其中a1.(1)当a2时,求不等式f(x)4|x4|的解集;(2)已知关于x的不等式|f(2xa)2f(x)|2的解集为x|1x2,求a的值解(1)当a2时,f(x)|x4|当x2时,由f(x)4|x4|得2x64,解得x1;当2x4时,f(x)4|x4|无解;当x4时,由f(x)4|x4|得2x64,解得x5;所以f(x)4|x4|的解集为x|x1或x5(2)记h(x)f(2xa)2f(x),则h(x)由|h(x)|2,解得x.又已知|h(x)|2的解集为x|1x2,所以于是a3.思维升华(1)用零点分段法解绝对值不等式的步骤:求零点;划区间、去绝对值号;分别解去掉绝对值的不等式;取每个结果的并集,注意在分段时不要遗漏区间的端点值(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法跟踪演练1已知函数f(x)|x2|x5|.(1)证明:3f(x)3;(2)求不等式f(x)x28x15的解集(1)证明f(x)|x2|x5|当2x5时,32x73.所以3f(x)3.(2)由(1)可知,当x2时,f(x)x28x15的解集为空集;当2x5时,f(x)x28x15的解集为x|5xy.求证:2x2y3.(2)已知实数x,y满足:|xy|,|2xy|,求证:|y|0,y0,xy0,2x2y2(xy)(xy)(xy)33,所以2x2y3,(2)因为3|y|3y|2(xy)(2xy)|2|xy|2xy|,由题设知|xy|,|2xy|,从而3|y|,所以|y|.思维升华(1)作差法应该是证明不等式的常用方法作差法证明不等式的一般步骤:作差;分解因式;与0比较;结论关键是代数式的变形能力(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧跟踪演练2(1)若a,bR,求证:.(2)已知a,b,c均为正数,ab1,求证:1.证明(1)当|ab|0时,不等式显然成立当|ab|0时,由0|ab|a|b|,所以.(2)因为b2a,c2b,a2c,故(abc)2(abc),即abc,所以1.热点三柯西不等式的应用柯西不等式(1)设a,b,c,d均为实数,则(a2b2)(c2d2)(acbd)2,当且仅当adbc时等号成立(2)设a1,a2,a3,an,b1,b2,b3,bn是实数,则(aaa)(bbb)(a1b1a2b2anbn)2,当且仅当bi0(i1,2,n)或存在一个数k,使得aikbi(i1,2,n)时,等号成立例3(2015福建)已知a0,b0,c0,函数f(x)|xa|xb|c的最小值为4.(1)求abc的值;(2)求a2b2c2的最小值解(1)因为f(x)|xa|xb|c|(xa)(xb)|c|ab|c,当且仅当axb时,等号成立又a0,b0,所以|ab|ab.所以f(x)的最小值为abc.又已知f(x)的最小值为4,所以abc4.(2)由(1)知abc4,由柯西不等式得(491)2(abc)216,即a2b2c2.当且仅当,即a,b,c时等号成立故a2b2c2的最小值为.思维升华(1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明(2)利用柯西不等式求最值的一般结构为(aaa)()(111)2n2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件跟踪演练3已知定义在R上的函数f(x)|x1|x2|的最小值为a.(1)求a的值;(2)若p,q,r是正实数,且满足pqra,求证:p2q2r23.(1)解因为|x1|x2|(x1)(x2)|3,当且仅当1x2时,等号成立,所以f(x)的最小值等于3,即a3.(2)证明由(1)知pqr3,又因为p,q,r是正实数,所以(p2q2r2)(121212)(p1q1r1)2(pqr)29,即p2q2r23.1解不等式|x3|2x1|1.解当x3时,原不等式转化为(x3)(12x)1,解得x10,x3.当3x时,原不等式转化为(x3)(12x)1,解得x,3x.当x时,原不等式转化为(x3)(2x1)2,x2.综上可知,原不等式的解集为x|x22设a,b,c均为正实数,试证明不等式,并说明等号成立的条件解因为a,b,c均为正实数,所以,当且仅当ab时等号成立;,当且仅当bc时等号成立;,当且仅当ac时等号成立三个不等式相加,得,当且仅当abc时等号成立3若a、b、c均为实数,且ax22y,by22z,cz22x.求证:a、b、c中至少有一个大于0.证明假设a、b、c都不大于0,即a0,b0,c0,所以abc0.而abc(x22y)(y22z)(z22x)(x22x)(y22y)(z22z)(x1)2(y1)2(z1)23.所以abc0,这与abc0矛盾,故a、b、c中至少有一个大于0.A组专题通关1如果关于x的不等式|x3|x4|a的解集不是空集,求实数a的取值范围解设y|x3|x4|,则y的图象如图所示:若|x3|x4|a的解集不是空集,则(|x3|x4|)min1时,不等式的解集不是空集即实数a的取值范围是(1,)2设x0,y0,若不等式0恒成立,求实数的最小值解x0,y0,原不等式可化为()(xy)2.2224,当且仅当xy时等号成立()(xy)min4,4,4.即实数的最小值是4.3若不等式|2x1|x2|a2a2对任意实数x恒成立,求实数a的取值范围解设y|2x1|x2|当x5;当2x;当x时,y3x1,故函数y|2x1|x2|的最小值为.因为不等式|2x1|x2|a2a2对任意实数x恒成立,所以a2a2.解不等式a2a2,得1a,故a的取值范围为1,4设不等式|x2|a(aN*)的解集为A,且A,A,(1)求a的值;(2)求函数f(x)|xa|x2|的最小值解(1)因为A,且A,所以a,且a,解得a.又因为aN*,所以a1.(2)因为|x1|x2|(x1)(x2)|3,当且仅当(x1)(x2)0,即1x2时取到等号,所以f(x)的最小值为3.5已知f(x)|x1|x1|,不等式f(x)4的解集为M.(1)求M;(2)当a,bM时,证明:2|ab|4ab|.(1)解f(x)|x1|x1|当x1时,由2x4,得2x1;当1x1时,f(x)21时,由2x4,得1x2.综上可得2x2,即M(2,2)(2)证明a,bM,即2a2,2b2,4(ab)2(4ab)24(a22abb2)(168aba2b2)(a24)(4b2)0,4(ab)2(4ab)2,2|ab|x1|成立,求实数x的取值范围解由柯西不等式知12()2()2a2(b)2(c)2(1abc)2即6(a22b23c2) (a2b3c)2.又a22b23c26,66(a2b3c)2,6a2b3c6,存在实数a,b,c,使得不等式a2b3c|x1|成立|x1|6,7x5.x的取值范围是x|7x0.(1)当a1时,求不等式f(x)3x2的解集;(2)若不等式f(x)0的解集为x|x1,求a的值解(1)当a1时,f(x)3x2可化为|x1|2.由此可得x3或x1.故不等式f(x)3x2的解集为x|x3或x1(2)由f(x)0得|xa|3x0.此不等式化为不等式组或即或因为a0,所以不等式组的解集为x|x由题设可得1,故a2.8(2016课标全国丙)已知函数f(x)|2xa|a.(1)当a2时,求不等式f(x)6的解集;(2)设函数g(x)|2x1|.当xR时,f(x)g(x)3,求a的取值范围解(1)当a2时,f(x)|2x2|2.解不等式|2x2|26得1x3.因此f(x)6的解集为x|1x3(2)当xR时,f(x)g(x)|2xa|a|12x|2xa12x|a|1a|a,当x时等号成立,所以当xR时,f(x)g(x)3等价于|1a|a3.当a1时,等价于1aa3,无解当a1时,等价于a1a3,解得a2.所以a的取值范围是2,)
展开阅读全文