九年级数学上学期第一次月考试卷(含解析) 苏科版2

上传人:san****019 文档编号:11758631 上传时间:2020-05-02 格式:DOC 页数:30 大小:524.50KB
返回 下载 相关 举报
九年级数学上学期第一次月考试卷(含解析) 苏科版2_第1页
第1页 / 共30页
九年级数学上学期第一次月考试卷(含解析) 苏科版2_第2页
第2页 / 共30页
九年级数学上学期第一次月考试卷(含解析) 苏科版2_第3页
第3页 / 共30页
点击查看更多>>
资源描述
江苏省无锡市东湖塘中学2016-2017学年九年级(上)第一次月考数学试卷一、选择题1关于x的方程x24=0的根是()A2B2C2,2D2,2下列说法中正确的是()A弦是直径B弧是半圆C半圆是圆中最长的弧D直径是圆中最长的弦3某地区周一至周六每天的平均气温为:2,1,3,5,6,5(单位:),则这组数据的极差是()A7B6C5D04若O的弦AB等于半径,则AB所对的圆心角的度数是()A30B60C90D1205在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()ABCD6三角形的内心是三角形的()A三条高的交点B三条角平分线的交点C三条中线的交点D三条边的垂直平分线的交点7如图,AB、AC是O的两条弦,A=25,过点C的切线与OB的延长线交于点D,则D的度数()A25B30C40D50248某县2014年的GDP是250亿元,要使2016年的GDP达到360亿元,求这两年该县GDP年平均增长率设年平均增长率为x,可列方程()7A250(1+2x)2=360B250(1+2x)=360pC250(1+x)(1+2x)=360D250(1+x)2=360f9如图,梯形ABCD中,ABDC,ABBC,AB=2cm,CD=4cm以BC上一点O为圆心的圆经过A、D两点,且AOD=90,则圆心O到弦AD的距离是()aA cmB cmC cmD cmo10如图,圆中有四条弦,每一条弦都将圆分割成面积比为1:3的两个部分,若这些弦的交点恰是一个正方形的顶点,那么这个正方形的外接圆的面积与图中阴影部分面积的比值为()wAB2CD2x二、填空题611一元二次方程2x25x1=0的两根为x1,x2,则x1+x2=,x1x2=012若O的半径为5,弦AB的弦心距为3,则AB=f13弧的半径为24,所对圆心角为60,则弧长为H14一组数据:2,3,4,5,6的方差是M15一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是B16如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为v17如图,在三角形ABC中,A=70,O截ABC的三边所得的弦相等,则BOC=b18如图,平面直角坐标系中,分别以点A(2,3),B(3,4)为圆心,以1、2为半径作A、B,M、N分别是A、B上的动点,P为x轴上的动点,则PM+PN的最小值等于E三、解答题p19解方程w(1)(2x3)2=25 e(2)x2x1=0T(3)x26x+8=0 a(4)(x3)2=(52x)2g20已知关于x的一元二次方程x2+(2m1)x+m2=0有两个实数根x1和x2=(1)求实数m的取值范围;=(2)当x1x22x12x2=10时,求m的值21如图,O的半径是5,P是O外一点,PO=8,OPA=30,求AB和PB的长22如图,AB是O的直径,点D在O上,DAB=45,BCAD,CDAB(1)判断直线CD与O的位置关系,并说明理由;(2)若O的半径为1,求图中阴影部分的面积(结果保留)23从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛预先对这两名运动员进行了6次测试,成绩如下(单位:个):甲:6,12,8,12,10,12;乙:9,10,11,10,12,8;(1)填表:平均数众数方差甲10乙10(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?24有三张正面分别标有数字:1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率25如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)在图中确定该圆弧所在圆的圆心D点的位置,D点坐标为(2)连接AD、CD,求D的半径及弧的长26如图,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作O,过点P作O的切线,交AD于点F,切点为E(1)求证:OFBE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围27如图,在半径为2的扇形AOB中,AOB=90,点C是弧AB上的一个动点(不与点A、B重合)ODBC,OEAC,垂足分别为D、E(1)当BC=1时,求线段OD的长;(2)在DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,DOE的面积为y,求y关于x的函数关系式,并写出它的定义域28(1)数学爱好者小森偶然阅读到这样一道竞赛题:一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF的面积小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图可以求出六边形ABCDEF的面积等于(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3求这个八边形的面积请你仿照小森的思考方式,求出这个八边形的面积2016-2017学年江苏省无锡市东湖塘中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1关于x的方程x24=0的根是()A2B2C2,2D2,【考点】解一元二次方程-直接开平方法【分析】直接利用开平方法解方程得出答案【解答】解:x24=0,则x2=4,解得:x1=2,x2=2,故选:C【点评】此题主要考查了直接开平方法解一元二次方程,正确开平方是解题关键2下列说法中正确的是()A弦是直径B弧是半圆C半圆是圆中最长的弧D直径是圆中最长的弦【考点】圆的认识【分析】根据弦、直径、弧、半圆的概念一一判断即可【解答】解:A、错误弦不一定是直径B、错误弧是圆上两点间的部分C、错误优弧大于半圆D、正确直径是圆中最长的弦故选D【点评】本题考查圆的基本知识,解题的关键是记住弦、弧、半圆、直径等一个概念,属于基础题,中考常考题型3某地区周一至周六每天的平均气温为:2,1,3,5,6,5(单位:),则这组数据的极差是()A7B6C5D0【考点】极差【分析】先找出这组数据的最大值与最小值,再根据极差的定义即可求得【解答】解:这组数据的最大数是6,最小数是1,则极差是:6(1)=7;故选A【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值4若O的弦AB等于半径,则AB所对的圆心角的度数是()A30B60C90D120【考点】圆心角、弧、弦的关系;等边三角形的判定与性质【分析】由O的弦AB等于半径,可得AOB是等边三角形,继而求得AB所对的圆心角的度数【解答】解:OA=OB=AB,OAB是等边三角形,AOB=60故选B【点评】此题考查了等边三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用5在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()ABCD【考点】几何概率【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据旋转的性质求出阴影区域的面积即可【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故选A【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比6三角形的内心是三角形的()A三条高的交点B三条角平分线的交点C三条中线的交点D三条边的垂直平分线的交点【考点】三角形的内切圆与内心;三角形的重心【分析】A、三条高的交点叫垂心;B、三角形的三条角平分线的交点叫内心;C、三条中线的交点叫重心;D、三条边的垂直平分线的交点叫外心【解答】解:三角形的内心是三角形的三条角平分线的交点,故选B【点评】本题考查了三角形三条重要线段交点的问题,明确内心:三角形的三条角平分线的交点外心:三条边的垂直平分线的交点重心:三条中线的交点7如图,AB、AC是O的两条弦,A=25,过点C的切线与OB的延长线交于点D,则D的度数()A25B30C40D50【考点】切线的性质【分析】由于CD是切线,可知OCD=90,而A=25,利用圆周角定理可求COD,进而可求D【解答】解:连接OC,CD是切线,OCD=90,A=25,COD=2A=50,D=9050=40故选C【点评】本题利用了切线的概念和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8某县2014年的GDP是250亿元,要使2016年的GDP达到360亿元,求这两年该县GDP年平均增长率设年平均增长率为x,可列方程()A250(1+2x)2=360B250(1+2x)=360C250(1+x)(1+2x)=360D250(1+x)2=360【考点】由实际问题抽象出一元二次方程【分析】2016年的GDP360=2014年的GDP250(1+年平均增长率)2,把相关数值代入即可【解答】解:2015年的GDP为250(1+x),2014年的GDP为250(1+x)(1+x)=250(1+x)2,即所列的方程为250(1+x)2=360,故选D【点评】考查列一元二次方程解决实际问题;得到2016年GDP的等量关系是解决本题的关键9(2007南通)如图,梯形ABCD中,ABDC,ABBC,AB=2cm,CD=4cm以BC上一点O为圆心的圆经过A、D两点,且AOD=90,则圆心O到弦AD的距离是()A cmB cmC cmD cm【考点】垂径定理;全等三角形的性质;勾股定理;特殊角的三角函数值【分析】易证AOD是等腰直角三角形则圆心O到弦AD的距离等于AD,所以可先求AD的长【解答】解:以BC上一点O为圆心的圆经过A、D两点,则OA=OD,AOD是等腰直角三角形易证ABOOCD,则OB=CD=4cm在直角ABO中,根据勾股定理得到OA2=20;在等腰直角OAD中,过圆心O作弦AD的垂线OP则OP=OAsin45=cm故选:B【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解10如图,圆中有四条弦,每一条弦都将圆分割成面积比为1:3的两个部分,若这些弦的交点恰是一个正方形的顶点,那么这个正方形的外接圆的面积与图中阴影部分面积的比值为()AB2CD2【考点】正多边形和圆【分析】根据条件先确定小正方形面积与阴影部分面积的关系,再求出这个正方形的外接圆的面积与图中阴影部分面积的比值即可【解答】解:如图用a、b、c表示图中相应部分的面积由题意:4(a+2b)=4a+4b+c,c=4b,小正方形的面积=阴影部分面积的2倍,设小正方形的边长为x,则外接圆的面积=x2,这个正方形的外接圆的面积与图中阴影部分面积的比值=x2: x2=故选C【点评】本题考查正多边形与圆,圆的面积,正方形的外接圆面积与正方形面积的关系,解题的关键是用方程的思想解决问题,需要掌握正多边形与圆的位置关系二、填空题11一元二次方程2x25x1=0的两根为x1,x2,则x1+x2=,x1x2=【考点】根与系数的关系【分析】根据韦达定理可直接得出【解答】解:方程2x25x1=0的两根为x1,x2,x1+x2=,x1x2=,故答案为:,【点评】本题主要考查根与系数的关系,掌握韦达定理是解题的关键12(2015德州校级二模)若O的半径为5,弦AB的弦心距为3,则AB=8【考点】垂径定理;勾股定理【分析】如图,过O作OEAB于E,则OE=3,OB=5,然后根据垂径定理即可求出AB【解答】解:如图,过O作OEAB于E,则OE=3,OB=5,OE过圆心,OE平分弦AB,在RtOEB中,OE=3,OB=5,EB=4,故AB=2EB=24=8【点评】本题是垂径定理和勾股定理的运用,主要通过作辅助线构造直角三角形,然后利用勾股定理解决问题13(2015秋吴江区期末)弧的半径为24,所对圆心角为60,则弧长为8【考点】弧长的计算【分析】直接利用弧长公式得出即可【解答】解:弧的半径为24,所对圆心角为60,弧长为l=8故答案为:8【点评】此题主要考查了弧长公式的应用,熟练记忆公式是解题关键14一组数据:2,3,4,5,6的方差是2【考点】方差【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差计算公式可以解答本题【解答】解:,=2,故答案为:2【点评】本题考查方差,解题的关键是明确题意,会利用方差公式计算一组数据的方差15(2014盐城)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是【考点】几何概率【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出小鸟落在阴影方格地面上的概率【解答】解:正方形被等分成16份,其中黑色方格占4份,小鸟落在阴影方格地面上的概率为: =故答案为:【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比16(2016惠安县模拟)如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2【考点】垂径定理的应用【分析】作ODAB于D,连接OA,先根据勾股定理得AD的长,再根据垂径定理得AB的长【解答】解:作ODAB于D,连接OAODAB,OA=2,OD=OA=1,在RtOAD中AD=,AB=2AD=2故答案为:2【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键17如图,在三角形ABC中,A=70,O截ABC的三边所得的弦相等,则BOC=125【考点】三角形的内切圆与内心【分析】根据弦相等,则对应的弦心距相等,即O到ABC的三边相等,则O是ABC的内心,然后根据内心的性质求解【解答】解:O截ABC的三边所得的弦相等,O到ABC三边的距离相等,O在三角形的角的平分线上,即O是ABC的内心OBC=ABC,OCB=ACB,OBC+OCB=(ABC+ACB),又ABC中,ABC+ACB=180A=18070=110OBC+OCB=55,BOC=180(OBC+OCB)=18055=125故答案是:125【点评】本题考查了三角形的内心,以及圆的性质,正确证明O是ABC的内心是解决本题的关键18(2016鄂州模拟)如图,平面直角坐标系中,分别以点A(2,3),B(3,4)为圆心,以1、2为半径作A、B,M、N分别是A、B上的动点,P为x轴上的动点,则PM+PN的最小值等于3【考点】圆的综合题【分析】作A关于x轴的对称A,连接BA分别交A和B于M、N,交x轴于P,如图,根据两点之间线段最短得到此时PM+PN最小,再利用对称确定A的坐标,接着利用两点间的距离公式计算出AB的长,然后用AB的长减去两个圆的半径即可得到MN的长,即得到PM+PN的最小值【解答】解:作A关于x轴的对称A,连接BA分别交A和B于M、N,交x轴于P,如图,则此时PM+PN最小,点A坐标(2,3),点A坐标(2,3),点B(3,4),AB=,MN=ABBNAM=21=3,PM+PN的最小值为3故答案为3【点评】本题考查了圆的综合题:掌握与圆有关的性质和关于x轴对称的点的坐标特征;会利用两点之间线段最短解决线段和的最小值问题;会运用两点间的距离公式计算线段的长;理解坐标与图形性质三、解答题19解方程(1)(2x3)2=25 (2)x2x1=0(3)x26x+8=0 (4)(x3)2=(52x)2【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法【分析】(1)利用直接开平方法解方程即可;(2)利用配方法解方程即可;(3)分解因式后得到(x4)(x2)=0,推出方程x4=0,x2=0,求出方程的解即可;(4)移项后,利用平方差公式分解因式,再解两个一元一次方程即可【解答】解:(1)(2x3)2=25,2x3=5,2x=8或2x=2,x1=4,x2=1; (2)x2x1=0,x2x+1=0,(x)2=,x=,x1=,x2=;(3)x26x+8=0,(x2)(x4)=0,x2=0或x4=0,x1=2,x2=4; (4)(x3)2=(52x)2,(x35+2x)(x3+52x)=0,3x8=0或2x=0,x1=,x2=2【点评】本题主要考查了解一元二次方程的知识,根据方程的特点选择合适的方法解一元二次方程是解决此类问题的关键一般解一元二次方程的方法有直接开平方法、因式分解法、公式法、配方法20已知关于x的一元二次方程x2+(2m1)x+m2=0有两个实数根x1和x2(1)求实数m的取值范围;(2)当x1x22x12x2=10时,求m的值【考点】根与系数的关系;根的判别式【分析】(1)由方程有两个实数根结合根的判别式即可得出关于m的一元一次不等式,解不等式即可得出m的取值范围;(2)根据根与系数的关系找出x1+x2=12m、x1x2=m2,结合x1x22x12x2=10即可得出关于m的一元二次方程,解方程即可得出m的值,结合(1)的结论即可得出m的值【解答】解:(1)关于x的一元二次方程x2+(2m1)x+m2=0有两个实数根x1和x2,=(2m1)24m2=4m+10,m(2)x1+x2=12m,x1x2=m2,x1x22x12x2=x1x22(x1+x2)=m22(12m)=m2+4m2=10,即m2+4m12=0,解得:m=2或m=6,m,m=6【点评】本题考查了跟与系数的关系以及根的判别式,根据方程解的情况结合根的判别式找出关于m的不等式是解题的关键21如图,O的半径是5,P是O外一点,PO=8,OPA=30,求AB和PB的长【考点】垂径定理;切割线定理【分析】延长PO交O于点C,过点O作OEAB于E,OPA=30,PO=8,可得OE=4;在RtOBE中,OB为半径,可以得出BE的长度,即可得到AB;再根据割线定理,有PDPC=PBPA,即可得出PB【解答】解:延长PO交O与点C,过点O作OEAB于E根据题意,OPA=30,且PO=8,在RtOPE中,OE=OP=4;在RtOBE中,OB=5,OE=4,则BE=3,即AB=2BE=6;又因为PDPC=PBPA,即PDPC=PB(PB+AB),即得PB=即AB=6;PB=【点评】本题综合考查了垂径定理和割线定理在圆中的应用22(2010南京)如图,AB是O的直径,点D在O上,DAB=45,BCAD,CDAB(1)判断直线CD与O的位置关系,并说明理由;(2)若O的半径为1,求图中阴影部分的面积(结果保留)【考点】扇形面积的计算;切线的判定【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可(2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解【解答】解:(1)直线CD与O相切理由如下:如图,连接ODOA=OD,DAB=45,ODA=45AOD=90CDABODC=AOD=90,即ODCD又点D在O上,直线CD与O相切;(2)O的半径为1,AB是O的直径,AB=2,BCAD,CDAB四边形ABCD是平行四边形CD=AB=2S梯形OBCD=;图中阴影部分的面积等于S梯形OBCDS扇形OBD=12=【点评】此题主要考查了切线的判定、平行四边形的判定和性质以及扇形的面积计算方法不规则图形的面积一定要注意分割成规则图形的面积进行计算23(2014秋响水县校级期末)从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛预先对这两名运动员进行了6次测试,成绩如下(单位:个):甲:6,12,8,12,10,12;乙:9,10,11,10,12,8;(1)填表:平均数众数方差甲1012乙1010(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?【考点】方差;算术平均数;众数【分析】(1)根据众数、平均数、方差的求法进行计算即可;(2)可以从不同的方面说,比如:平均数或方差,方差越小,成绩越稳定,答案不唯一【解答】解:(1)甲:12出现的次数最多,所以众数为12,S甲2= (610)2+(1210)2+(810)2+(1210)2+(1010)2+(1210)2=; 乙: =(9+10+11+10+12+8)=10 故答案为12,; 10;(2)解答一:派甲运动员参加比赛,因为甲运动员成绩的众数是12个,大于乙运动员成绩的众数10个,说明甲运动员更容易创造好成绩;解答二:派乙运动员参加比赛,因为两位运动员成绩的平均数都是10个,而乙成绩的方差小于甲成绩的方差,说明乙运动员的成绩更稳定【点评】本题考查了方差、平均数以及众数,是中考的常见题型,要熟练掌握24(2013昆明)有三张正面分别标有数字:1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率【考点】列表法与树状图法;反比例函数图象上点的坐标特征【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解【解答】解:(1)根据题意画出树状图如下:;(2)当x=1时,y=2,当x=1时,y=2,当x=2时,y=1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比25如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)在图中确定该圆弧所在圆的圆心D点的位置,D点坐标为(2,0)(2)连接AD、CD,求D的半径及弧的长【考点】垂径定理;坐标与图形性质;弧长的计算【分析】(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D点坐标;(2)在AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,即为D的半径;过C作CEx轴于点E,则可证得OADEDC,可得ADO=DCE,可得ADO+CDE=90,可得到ADC的度数,利用弧长公式可得结果【解答】解:(1)如图1,分别作AB、BC的垂直平分线,两线交于点D,D点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD、CD,过点C作CEx轴于点E,则OA=4,OD=2,在RtAOD中,可求得AD=2,即D的半径为2,且CE=2,DE=4,23344856AO=DE,OD=CE,在AOD和DEC中,AODDEC(SAS),OAD=CDE,CDE+ADO=90,ADC=90,弧AC的长=2=【点评】本题主要考查垂径定理和全等三角形的判定和性质、扇形等知识的综合应用,掌握确定圆心的方法,即确定出点D的坐标是解题的关键26(2013秋濠江区期末)如图,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作O,过点P作O的切线,交AD于点F,切点为E(1)求证:OFBE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围【考点】切线的性质;全等三角形的判定与性质;正方形的性质【分析】(1)连接OE,根据切线的性质求得OAFA,OEEF,FA=FE,根据角的平分线定理的逆定理求得AOF=EOF=AOE,然后求得OBE=OEB,AOE=OBE+OEB=2OBE,从而求得AOF=OBE,根据平行线的判定证得OFBE;(2)过F作FQBC于Q,根据勾股定理即可求得y关于x的函数解析式【解答】(1)证明:连接OE,FE、FA是O的两条切线,OAFA,OEEF,FA=FE,AOF=EOF=AOE,又OB=OE,OBE=OEB,AOE=OBE+OEB=2OBEAOF=OBEOFBE; (2)解:过F作FQBC于Q,PQ=BPBQ=xy,PF=EF+EP=FA+BP=x+y,在RtPFQ中,FQ2+QP2=PF2,22+(xy)2=(x+y)2,化简得y=,(1x2)【点评】本题考查了切线的性质,正方形的性质,角平分线的性质定理的逆定理,勾股定理的应用等;作出辅助线构建等腰三角形和矩形是本题的关键27(2012上海)如图,在半径为2的扇形AOB中,AOB=90,点C是弧AB上的一个动点(不与点A、B重合)ODBC,OEAC,垂足分别为D、E(1)当BC=1时,求线段OD的长;(2)在DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,DOE的面积为y,求y关于x的函数关系式,并写出它的定义域【考点】垂径定理;勾股定理;三角形中位线定理【分析】(1)根据ODBC可得出BD=BC=,在RtBOD中利用勾股定理即可求出OD的长;(2)连接AB,由AOB是等腰直角三角形可得出AB的长,再根据D和E是中点可得出DE=;(3)由BD=x,可知OD=,由于1=2,3=4,所以2+3=45,过D作DFOE,DF=,EF=x即可得出结论【解答】解:(1)如图(1),ODBC,BD=BC=,OD=;(2)如图(2),存在,DE是不变的连接AB,则AB=2,D和E分别是线段BC和AC的中点,DE=AB=;(3)如图(3),连接OC,BD=x,OD=,1=2,3=4,2+3=45,过D作DFOEDF=,由(2)已知DE=,在RtDEF中,EF=,OE=OF+EF=+=y=DFOE=(0x)【点评】本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等28(2015江阴市模拟)(1)数学爱好者小森偶然阅读到这样一道竞赛题:一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF的面积小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图可以求出六边形ABCDEF的面积等于(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3求这个八边形的面积请你仿照小森的思考方式,求出这个八边形的面积【考点】圆的综合题【分析】(1)如图,利用六边形ABCDEF每次绕圆心O旋转120都和原来的图形重合可判断MNQ为等边三角形,MAF、NBC和QDE都是等边三角形,然后根据等边三角形的面积公式求解;(2)先画出分割重组的图形,如图,利用八边形ABCDEFGH为轴对称图形,每次绕圆心O旋转90都和原来的图形重合,可判断四边形PQMN为正方形,PAB、GCD、MEF、NHG都是等腰直角三角形,根据根据正方形的性质和等腰直角三角形的性质求解【解答】解:(1)如图,六边形ABCDEF为轴对称图形,每次绕圆心O旋转120都和原来的图形重合,MNQ为等边三角形,MAF、NBC和QDE都是等边三角形,NQ=3+5+3=11,六边形ABCDEF的面积=SMNQ3SAMN=112332=;故答案为(2)如图,八边形ABCDEFGH为轴对称图形,每次绕圆心O旋转90都和原来的图形重合,四边形PQMN为正方形,PAB、GCD、MEF、NHG都是等腰直角三角形,PA=AB=,PN=+3+=3+2,这个八边形的面积=(3+2)24=9+12+84=13+12【点评】本题考查了圆的综合题:熟练掌握圆心角、弧、弦的关系;正多边形的判定与性质;会运用等边三角形和等腰直角三角形的性质进行计算;学会利用类比的方法解决问题
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!