广东省2019届中考数学复习 第二章 方程与不等式 第9课时 列方程(组)解应用题课件.ppt

上传人:sh****n 文档编号:11507428 上传时间:2020-04-26 格式:PPT 页数:21 大小:611KB
返回 下载 相关 举报
广东省2019届中考数学复习 第二章 方程与不等式 第9课时 列方程(组)解应用题课件.ppt_第1页
第1页 / 共21页
广东省2019届中考数学复习 第二章 方程与不等式 第9课时 列方程(组)解应用题课件.ppt_第2页
第2页 / 共21页
广东省2019届中考数学复习 第二章 方程与不等式 第9课时 列方程(组)解应用题课件.ppt_第3页
第3页 / 共21页
点击查看更多>>
资源描述
第二章方程与不等式,第9讲列方程(组)解应用题,1.某个体商店今年1月份的销售额是1万元,3月份的销售额是2.25万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%2.(2018广西壮族自治区)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1x)2100B.100(1x)280C.80(12x)100D.80(1x2)100,C,A,3.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“六一”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.20.8x20.9(60x)87B.1.20.8x20.9(60x)87C.20.9x1.20.8(60x)87D.20.9x1.20.8(60x)87,B,4.安徽省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1x)4.5B.1.4(12x)4.5C.1.4(1x)24.5D.1.4(1x)1.4(1x)24.5,C,5.小王乘公共汽车从甲地到相距40km的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车快20km/h,回来时路上所花时间比去时节省了.设公共汽车的平均速度为xkm/h,则下列方程中正确的是()A.B.C.D.,A,6.(2017兰州市)王叔叔从市场上买一块长80cm、宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方体工具箱,根据题意列方程为()A.(80x)(70x)3000B.80704x23000C.(802x)(702x)3000D.80704x2(70+80)x3000,C,7.(2016十堰市)某种药品原来售价100元,连续两次降价后售价为81元.若每次下降的百分率相同,则这个百分率是_.8.清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有_名同学.9.(2018嘉兴市)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测x个,则根据题意可列出方程:.,10%,59,10.(2018黄冈市)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,问两种型号粽子各订购了多少千克?,解:设订购了A型粽子x千克,B型粽子y千克.根据题意,得解得答:订购了A型粽子40千克,B型粽子60千克.,考点一列方程(组)解应用题的一般步骤1.审:审清题意,明确问题中的已知量、未知量以及各种量之间的关系;2.设:设好未知量(直接设未知数,或者间接设未知数),不要漏写单位;3.列:根据题意,找出等量关系,列出含有未知数的等式,注意等号两边量的单位必须一致,这是解应用题的关键步骤;4.解:用适当的方法解所列的方程;5.验:一是检验是不是方程的解,二是检验是不是符合题目中的实际意义;6.答:即解答,怎么问怎么答,注意不要漏写单位.,考点二列方程(组)解应用题的常用方法1.译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系.2.线示法:就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内在联系,找出等量关系.3.列表法:就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系.,4.图示法:就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助我们更好地理解题意.列方程(组)解应用题的实质是先把实际问题转化为数学问题(设元,列方程),再通过解决数学问题来解决实际问题(列方程,写出答案).在这个过程中,列方程起着承前启后的作用,因此,列方程是解应用题的关键.方程思想是把未知数看成已知数,让所设未知数的字母和已知数一样参加运算,这种思想方法是数学学习中常用的重要方法之一,是代数解法的重要标志.,考点二列方程(组)解应用题的常用方法,考点三列方程(组)解应用题的常见类型题及其等量关系,考点三列方程(组)解应用题的常见类型题及其等量关系,考点三列方程(组)解应用题的常见类型题及其等量关系,【例题1】(2016深圳市)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,问原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.,分析:设原计划每天铺设x米,则实际施工时每天铺设(x50)米,根据“原计划所用时间实际所用时间2天”列出方程即可.,考点:由实际问题抽象出分式方程.,A,变式:(2016广东省)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)问这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?,解:(1)设这个工程队原计划每天修建道路xm.依题意,得,解得x100.经检验,x100是原分式方程的解.答:这个工程队原计划每天修建道路100m.(2)设实际平均每天修建道路的工效比原计划增加a%.依题意,得,解得a20.经检验,a20是原分式方程的解.答:实际平均每天修建道路的工效比原计划增加20%.,【例题2】(2016贵港市)为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.,分析:(1)等量关系为:2014年投入科研经费(1增长率)22016年投入科研经费,把相关数值代入求解即可;(2)根据不等式:100%15%,求解即可.,考点:一元二次方程的应用;一元一次不等式组的应用.,经费,经费,经费,解:(1)设2014至2016年该市投入科研经费的年平均增长率为x.根据题意,得500(1x)2720,解得x10.220%,x22.2(不合题意,舍去).答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得100%15%,解得a828.又该市计划2017年投入的科研经费比2016年有所增加,a的取值范围为720a828.,变式:(2018安顺市)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,问2017年该地至少有多少户享受到优先搬迁租房奖励?,解:(1)设该地投入异地安置资金的年平均增长率为x.根据题意,得1280(1x)212801600,解得x10.550%,x22.5(不合题意,舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励.根据题意,得810004005400(a1000)5000000,解得a1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!