资源描述
1.反比例函数在几何问题中的应用(1)当面积一定时,三角形的一边长和这边上的成反比例,长方形的长和成反比例.(2)当体积一定时,柱(锥)体的底面积与成反比例.2.反比例函数在实际问题中的应用(1)在行程问题中,路程一定时,平均速度与成反比例.(2)在工程问题中,工作总量一定时,工作时间与成反比例.,第2课时反比例函数的应用,高,宽,高,时间,工作效率,3.反比例函数与一次函数的综合应用一般是把两个函数的图象结合起来考虑,常用方程、方程组、不等式解决问题.,探究点一:反比例函数的实际应用,k,m,(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多长时间?,t,探究点二:反比例函数与一次函数的应用,反比例,【导学探究】1.根据点B(-3,-2),先求得函数表达式,再根据点A的纵坐标,求得点A的,最后由点A和点B的坐标确定直线表达式.,坐标,(2)求点C的坐标,并结合图象直接写出y10时x的取值范围.【导学探究】2.由图象看出,在点C的左边,y10.,解:(2)由直线y1=0得,x=-2,所以点C的坐标为(-2,0),当y10时x的取值范围是x-2.,B,1.若长方形面积为5,则它的长y与宽x之间的函数关系用图象大致可表示为(),A,A,4.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm2)的反比例函数,假设其图象如图所示,则y与x的函数表达式为.,(2)求四边形OBCD的面积.,
展开阅读全文