【高考前三个月复习数学理科 概率与统计】专题8 第38练

上传人:工*** 文档编号:11144118 上传时间:2020-04-19 格式:DOC 页数:11 大小:153.42KB
返回 下载 相关 举报
【高考前三个月复习数学理科 概率与统计】专题8 第38练_第1页
第1页 / 共11页
【高考前三个月复习数学理科 概率与统计】专题8 第38练_第2页
第2页 / 共11页
【高考前三个月复习数学理科 概率与统计】专题8 第38练_第3页
第3页 / 共11页
点击查看更多>>
资源描述
第38练概率的两类模型题型分析高考展望概率是高中数学的重要内容,也是高考的必考知识点.在高考中,概率部分的命题主要有三个方面的特点:一是以古典概型的概率公式为考查对象,二是以几何概型的概率公式为考查对象,三是古典概型与其他知识相交汇,题目多以选择题或填空题的形式出现.常考题型精析题型一古典概型问题例1(1)(2015课标全国)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.(2)某班级的某一小组有6位学生,其中4位男生,2位女生,现从中选取2位学生参加班级志愿者小组,求下列事件的概率:选取的2位学生都是男生;选取的2位学生一位是男生,另一位是女生.点评求解古典概型问题的三个步骤(1)判断本次试验的结果是不是等可能的,设出所求事件A.(2)分别计算基本事件的总数n和所求事件A所包含的基本事件的个数m.(3)利用古典概型的概率公式P(A)求出事件A的概率.若直接求解比较困难,则可以利用间接的方法,如逆向思维,先求其对立事件的概率,进而再求所求事件的概率.变式训练1(2014课标全国)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A. B. C. D.题型二几何概型问题例2(1)设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.(2)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是()A. B. C. D.点评(1)几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域,这时,与试验有关的问题即可利用几何概型来解决.(2)几何概型的概率求解,一般要将问题转化为长度、面积或体积等几何问题.在转化中,面积问题的求解常常用到线性规划知识,也就是用二元一次不等式(或其他简单不等式)组表示区域.几何概型的试验中事件A的概率P(A)只与其所表示的区域的几何度量(长度、面积或体积)有关,而与区域的位置和形状无关.变式训练2(1)(2014辽宁)正方形的四个顶点A(1,1),B(1,1),C(1,1),D(1,1)分别在抛物线yx2和yx2上,如图所示.若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是_.(2)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为_.高考题型精练1.(2015山东)在区间0,2上随机地取一个数x,则事件“11”发生的概率为()A. B. C. D.2.(2015广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A. B. C. D.13.(2015福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A. B. C. D.4.(2014辽宁)若将一个质点随机投入如图所示的长方形ABCD中,其中AB2,BC1,则质点落在以AB为直径的半圆内的概率是()A. B.C. D.5.从标有1,2,3,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,然后把两数相加得和,则取得的两球上的数字之和大于11或者能被4整除的概率是()A. B.C. D.6.已知实数a,b满足x1,x2是关于x的方程x22xba30的两个实根,则不等式0x110,f(1)0,即建立平面直角坐标系如图.满足题意的区域为图中阴影部分,故所求概率P.7.B 掷两颗骰子,点数有以下情况:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,其中点数之和为5的有(1,4),(2,3),(3,2),(4,1),共4种,故所求概率为.8.B 设点P到点O的距离小于等于1的概率为P1,由几何概型,则P1,故点P到点O的距离大于1的概率P21.9. 设小王到校时间为x,小张到校时间为y,则小张比小王至少早到5分钟时满足xy5.如图,原点O表示7:30,在平面直角坐标系中画出小王和小张到校的时间构成的平面区域(图中正方形区域),该正方形区域的面积为400,小张比小王至少早到5分钟对应的图形(图中阴影部分)的面积为1515,故所求概率P.10.解析若该机器人移动6次恰好到点(3,3),则机器人在移动过程中沿x轴正方向移动3次、沿y轴正方向移动3次,因此机器人移动6次后恰好位于点(3,3)的概率为PC3320.11.解(1)由题意知,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A).因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)1P()1.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.12.解(1)因为样本容量与总体中的个体数的比是,所以样本中包含三个地区的个体数量分别是501,1503,1002.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为A,B1,A,B2,A,B3,A,C1,A,C2,B1,B2,B1,B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:B1,B2,B1,B3,B2,B3,C1,C2,共4个.所以P(D),即这2件商品来自相同地区的概率为.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!