模电知识总结.doc

上传人:jian****018 文档编号:10265448 上传时间:2020-04-10 格式:DOC 页数:36 大小:1.88MB
返回 下载 相关 举报
模电知识总结.doc_第1页
第1页 / 共36页
模电知识总结.doc_第2页
第2页 / 共36页
模电知识总结.doc_第3页
第3页 / 共36页
点击查看更多>>
资源描述
第一部分 半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。1、 导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电 半导体导电有两种载流子:自由电子和空穴均参与导电 自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。2、 本征半导体的导电性很差,但与环境温度密切相关。3、 杂质半导体(1)N型半导体掺入五价元素 (2)P型半导体掺入三价元素 4、 PN结P型半导体和N型半导体的交界面反向电压超过一定值时,就会反向击穿,称之为反向击穿电压在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层 5、 PN结的单向导电性外加电压 正向偏置 反向偏置6、 二极管的结构、特性及主要参数(1)P区引出的电极阳极;N区引出的电极阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。二极管的特性对温度很敏感。其中,Is为反向电流,Uon为开启电压,硅的开启电压0.5V,导通电压为0.60.8V,反向饱和电流0.1A,锗的开启电压0.1V,导通电压为0.10.3V,反向饱和电流几十A。 (2)主要参数 1)最大整流电流I:最大正向平均电流 2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半 3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感 4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性 7、稳压二极管 在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。(1) 稳压管的伏安特性 (2)主要参数 1)稳定电压U:规定电流下稳压管的反向击穿电压 2)稳定电流I:稳压管工作在稳定状态时的参考电流。电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。 【附加】限流电阻:由于稳压管的反向电流小于I时不稳定,大于最大稳定电流时会因超过额定功率而烧坏,故要串联一个限流电阻保证稳压管正常工作。3)额定功率P:等于稳定电压U与最大稳定电流I的乘积。超过此值时稳压管会因为结温度过高而损坏。4)动态电阻r:在稳压区,端电压变化量与电流变化量之比。r越小,说明电流变化时稳定电压的变化越小,稳压特性越好。5)温度系数:表示电流不变时,温度每变化1稳压值的变化量,即=U/T。 U7V时,为正值,即温度升高时稳定电压值上升; 4U7V时,很小,近似为零,性能稳定。7、 双极型晶体管晶体三极管半导体三极管晶体管的结构、特性及主要参数主要以NPN型硅管为例讲解放大作用、特性曲线和主要参数放大是对模拟信号最基本的处理。晶体管是放大电路的核心元件,它能控制能量的转换,将输入的任何微小变化不失真地放大输出,放大的对象是变化量。 Ie:发射区杂质浓度高,基区杂质浓度低,大量自由电子越过发射结到达基区。Ib:基区很薄,杂质浓度低Ic:集电结外加反向电压且结面积较大,基区的非平衡少子越过集电结到达集电区,形成漂移电流。可见,在Vcc的作用下,漂移运动形成集电极电流Ic。 P区很薄且杂质浓度很低,发射区-上层的N区杂质浓度很高,集电区-下层的N区面积很大上述三个区域的特点与晶体管的外特性紧密相关。 (2)特性曲线 (3)主要参数 1)直流参数 共射直流电流系数 共基直流电流放大系数 极间反向电流硅管的温度稳定性比锗管的好 发射极开路时集电结的反向饱和电流Icbo 基极开路时集电极与发射极间的穿透电流Iceo 2)交流参数 共射交流电流系数 共基交流电流放大系数 特征频率fT使下降到1的信号频率称为特征频率 3)极限参数为使晶体管安全工作对它的电压、电流和功率耗损的限制 最大集电极耗散功率P是一个确定的值 决定于晶体管的温升。P=iu=常数最大集电极电流I 使明显减小的i即为I极间反向击穿电压 第二部分 基本放大电路及多级放大电路晶体管放大电路的组成和工作原理。掌握图解分析法和等效模型分析法。掌握放大电路的三种组态及性能特点。电路的三种耦合方式及特点,动态和静态的分析方法。1、 放大的概念放大的前提是不失真,即只有在不失真的情况下放大才有意义。晶体管和场效应管是放大电路的核心元件。任何稳态信号都可以分解为若干频率正弦信号的叠加,所以放大电路以正弦波为测试信号。2、 基本共射放大电路的工作原理(1)设置静态工作点的必要性 1)静态工作点I 、I 、U 2)原因 不设置静态工作点会使输出电压严重失真,输出电压也毫无变化。 Q点不仅会影响电路是否会产生是真,还会影响着放大电路几乎所有的动态系数。(2) 工作原理及波形分析 所以选择合适的静态工作点才不会使输出波形产生非线性失真。基本共射放大电路的电压放大作用是利用晶体管的电流放大作用,并依靠Rc将电流的变化转化成电压的变化来实现。3、 放大电路的组成原则(1)组成原则 1) 必须根据所用放大管的类型提供直流电源,以便设置合适的静态工作点并做为输出的能源。 2)电阻取值适当,与电源配合,使放大管有合适的静态工作电流。3)输入信号必须能够作用于放大管的输入回路。4)当负载接入时,必须保证放大管输出回路的动态电流能够作用于负载,从而使负载获得比输入信号大得多的信号电流或信号电压。 (2)常见的两种共射放大电路 1)直接耦合共射放大电路电路中信号源与放大电路,放大电路与负载电阻均直接相连,故称其为“直接耦合”。 2)阻容耦合共射放大电路 由于C1用于连接信号源与放大电路,电容C2用于连接放大电路与负载,在电子电路中起连接作用的电容就称为耦合阻容。4、 放大电路的分析方法求静态工作点和各项动态参数(1)直流通路与交流通路 直流通路研究静态工作点:电容视为开路;电感线圈视为短路;信号源视为短路,但要保留其内阻。 交流通路研究动态参数:容量大的电容(如耦合电容)视为短路;无内阻的直流电源(如+Vcc)视为短路。(2)图解法多分析Q点位置、最大不失真电压和失真情况 (3)等效电路法 1)晶体管的直流模型及静态工作点的估算法 直流模型 2)晶体管共射h参数等效模型只能用于放大电路动态小信号参数的分析 共射h参数等效模型(4)静态工作点稳定的必要性 1)影响Q点不稳定的因素中温度对晶体管参数的影响最大。 2)稳定静态工作点的措施利用负反馈或温度补偿5、晶体管单管放大电路的三种基本接法及性能特点 接法的判断:输入电压和输出电压的公共端 组态性能共射组态共集组态共基组态.Ai大大小.Au大小小Ri中rbe大rbe+(1+)Re小rbe/(1+)Ro中rce小(rbe+Rs)/(1+)大(1+)rce频率响应差较好好6、 多级放大电路的耦合方式、特点,动态和静态分析方法(1)三种:直接耦合、阻容耦合、变压耦合1)直接耦合 前一级的输出端直接连接到后一级的输入端。 直接耦合多级放大电路常采用的是NPN和PNP型管混合使用的方法,在图(d)中,为使T2工作在放大区,T2管的集电极电位应该低于T1管的集电极电位。优点:具有良好的低频特性,可以放大变化缓慢的信号;没有大容量的电容,便于集成。缺点:静态工作点相互影响,带来一定困难;有零点漂移现象。 【附加】零点漂移:输入电压为零时而输出电压不为零且有缓慢变化。,温度是主要原因,故又称其为温度漂移。 2)阻容耦合 前一级的输出端通过电容连接到后一级的输入端T1:共射T2:共集 优点:各级静态工作点相互独立;适合于信号频率较高的电路。 缺点:低频性能差,不能放大变化缓慢的信号,不易于集成。3)变压器耦合 将前一级的输出端通过变压器接入到后一级的输入端或负载电阻上。 优点:各级静态工作点相互独立,可实现阻抗变换。 缺点:低频性能差,不能放大变化缓慢的信号,不易于集成。(2)多级放大电路的动态分析 上式即为多级放大电路的电压放大倍数 输入电阻为第一级的输入电阻:Ri=Ri1 输出电阻为最后一级的输出电阻:Ro=Ron 【注意】 当共集放大电路做为第一级时,它的输入电阻与其负载,即第二级的输入电阻有关;当共集放大电路作为最后一级时,它的输出电阻与其信号源内阻,即倒数第二级的输出电阻有关。 当多级放大电路的输出波形产生失真时,首先确定是哪一级失真,再判断是饱和失真还是截止失真。第三部分 反馈和反馈放大电路反馈的基本概念:正、负反馈;电压、电流、串联、并联负反馈;掌握反馈类型和极性判断,引入负反馈对放大性能的影响。估算深度负反馈电路的输出、输入间的关系。第四部分 运算电路 比例、加减、微积分线性运算电路。应熟练掌握其工作原理和输出、输入间的关系的分析。一般了解对数、指数运算电路的工作原理及一阶、二阶有源滤波器的电路组成、频率特性。1、理想运放的两个工作区 其工作区域只有两个:线性区和非线性区 下面介绍的各电路中,集成运放均工作在线性区。 (1)理想运放的性能指标 1)开环差模增益(放大倍数)Aod=; 2)差模输入电阻Rid=; 3)输出电阻Ro=0; 4)共模抑制比KCMR=; 5)上限截止频率fH=; 6)失调电压UOI、失调电流IOI和它们的温漂dUOI/dT()、dIOI/dT()均为零,且无任何内部噪声。 (2)理想运放在线性工作区 1)特点: 虚短路:两个输入端电位无穷接近但又不是真正短路。 由;Aod=;uO为有限值可得到,即。 虚断路:两个输入端的电流趋于零但又不是真正断路因为净输入电压为零,又因为理想运放的输入电阻为无穷大,所以两个输入端的输入电流也均为零,即 2)集成运放工作在线性区的电路特征 对理想运放,由于Aod=,因而若输入端之间加无穷小电压,则输出电压将超出其线性范围,因而电路中引入了负反馈,才得以保证了集成运放工作在线性区,集成运放工作在线性区的特征就是电路引入了负反馈可以用是否引入了负反馈来判断电路是否工作在线性区。 (3)理想运放的非线性工作区 若集成运放不是处于开环状态(即没有引入反馈),就只是引入了正反馈,则表明集成运放工作在非线性区。对理想运放,由于差模增益无穷大,只要同相输入端和反相输入端之间有无穷小的差值电压,输出电压就将达到正的最大值或负的最大值,即uo与输入电压(up-uN)不再是线性关系,其电压传输特性如图有两个特点:1) 输出电压只有两种可能:UOM或-UOM。2)虚断 2、基本运算电路 在运算电路中,以输入电压作为自变量,以输出电压作为函数;当输入电压变化时,输出电压将按一定的数学规律变化,即输出电压反映输入电压某种运算的结果。因此,集成运放必须工作在线性区,在深度负反馈条件下,利用反馈网络能够实现各种数学运算。 介绍比例、加减、积分、微分、对数、指数等基本运算电路。 在运算电路中,无论输入电压,还是输出电压,均是对“地”而言。 (1)比例运算电路 1)反相比例运算电路 基本电路 引入电压并联负反馈;R为补偿电阻,以保证集成运放输入级差分放大电路的对称性;其值为uI=0(即将输入端接地)时反相输入端总等效电阻,即R=R/Rf。 “虚地” 。 得到输出电压和输入电压的关系: 负号表明:uI与uO是反相。 因为电路引入了深度电压负反馈,且1+AF=,所以输出电阻Ro=0,电路带负载后运算关系不变。 因为输入端和地之间看进去的等效电阻等于输入端和虚地之间看进去的等效电阻,所以电路的输入电阻Ri=R。 为得到更大的输出电压从而获得较大的比例系数,引入T形网络反相比例运算电路。 T形网络反相比例运算电路 电阻R2、R3、R4构成英文字母T。 节点N的电流方程: 节点M的电位及R3和R4的电流,输出电压及整理式为: 因为R3的引入是反馈系数减小,所以为保证足够的反馈深度,应选用开环增益更大的集成电路。 2)同相比例运算电路 输入端和接地端互换,电路 引入电压串联负反馈,故可认 为输入电阻无穷大,输出电阻 为零。 根据“虚短”和“虚断”的概 念,得到: 输出电压为: 得到uI与uO同相。虽然此电路有高输入电阻、低输出电阻的优点,但因为集成运放有共模输入,所以为了提高运算精度,应当选用高共模抑制比的集成运放。 3)电压跟随器 若将电压的全部全部反馈到反相输入端,如图: 得到uO=uI=uN=uP。 在理想运放的条件下,输出电阻为零,所以可以认为 电路的输出为恒压源,带负载后运算关系不变。 (2)加减运算电路 实现多个输入信号按各自不同的比例求或求差的电路。 若所有输入信号均作用于集成运放的同一输入端,则实现加法运算;若一部分输入信号作用于集成运放的同相输入端,而另一部分作用于反相输入端,则实现减法运算。 1)求和运算电路 反相求和运算电路所有输入信号均作用于集成运放的反相输入端 根据“虚短”和“虚断”原则,uP=uN=0,得到节点N电流为:整理得到uo的表达式: 利用叠加原理,首先分别求出各输入电压单独作用时的输出电压,然后将它们相加,便得到所有信号共同作用时输出电压与输入电压的运算关系。 uI1单独作用时得到: 由于R2和R3的一端是“地”,一端是“虚地”,故它们的电流之和为零。因此电路实现的是反相比例运算。分别得到R2和R3单独作用时的输出: 于是得到总的输出电压为: 同相求和运算电路所有输入信号均作用于集成运放的同相输入端 也可以利用叠加原理求解同相比例运算电路: 2)加减运算电路 有上述可得,输出电压与同相输入端信号极性相同,与反向输入端信号极性相反,因而可将输入信号同时作用于两个输入端时来实现加减运算。 利用叠加原理求解,可以分解为下面两个图: 解得: 相加的总的输出电压为: 若电路只有两个输入,则电路实现了对输入差模信号的比例运算: 在使用单个集成运放构成加减运算电路时有两个缺点: 一是:电阻的选取和调整不方便;二是:对于每个信号源,输入电阻均较小。 因此,必要时可采用两级电路: 第一级为同相比例运算电路,因而 第二级为加减运算电路,用叠加原理得到 从电路的组成可以看出,无论对uI1还是对于uI2,均可认为输入电阻为无穷大。 3)积分运算电路与微分运算电路 这两个运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,它们还广泛应用于波形的产生和变换以及仪表仪器之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 积分运算电路 由于集成运放的同相输入端通过R接地,uP=uN=0,为“虚地”。 电路中,电容C中电流等于R中电流: iC=iR=uI/R 输出电压与电容上电压的关系为: uO=-uC 而电容上电压等于起电流的积分,故 在求解t1到t2时间段的积分值时: 在使用中,为了防止低频信号增益过大,常在电容上并联一个电阻加以限制,如上图虚线所示。 故可以画出当输入电压为阶跃信号、方波和正弦波时,输出电压的波形: 微分运算电路 、基本微分运算电路 根据“虚断”和“虚短”原则, uP=uN=0,为 “虚地”,电容两端电压uC=uI。因而, 输出电压 、实用微分运算电路 、逆函数型微分运算电路 为将积分运算电路作为反馈回路,则可得到微分运算电路。为了保证电路引入的是负反馈,使A2的输出电压uO2与输入电压uI极性相反,uI应加在A1的同相输入端。 由i1=i2,即得 根据积分运算电路的运算关系可知 从而得到输出电压的表达式为 4)对数与指数运算电路,乘法与除法运算电路 3、有源滤波电路第五部分 波形发生电路 了解产生自激振荡的条件。掌握电压比较器,用电压比较器组成的非正弦发生电路。1、自激振荡的条件 负反馈电路中,倘若在低频或高频段中存在f0,使电路产生的附加相移为,而且当,则电路将产生自激振荡。2、正弦波振荡电路 在没有外加输入信号的情况下,依靠电路自激振荡而产生正弦波输出电压的电路。 (1)产生正弦波振荡的条件 在正弦波振荡电路中,一要反馈信号能够取代输入信号,则必须要在电路中引入正反馈; 二要有外加的选频网络,用以确定振荡频率。 当输入量为零时,反馈量等于净输入量。如果电路只对频率为fo的正弦波产生正反馈过程,则输出信号 由上式可推出Xo越来越大。由于晶体管的非线性特性,当Xo的幅值增大到一定程度时,放大倍数的数值将减小,因此,Xo不会无限制地增大,当Xo增大到一定数值时,电路达到动态平衡。这时,输出量通过反馈网络产生反馈量作为放大电路的输入量,而输入量又通过放大电路维持着输出量,写成表达式为 也就是说正弦波振荡的平衡条件为 写成模与相角的形式为幅值平衡条件相位平衡条件 为了使输出量在合闸后能够有一个从小到大直至平衡在一定幅值的过程,电路的起振条件为 电路把除频率f=fo以外的输出量均逐渐衰减为零,因此输出量为f=fo的正弦波。 (2)正弦波振荡电路的组成及分类 放大电路选频网络正反馈电路稳幅环节(可无,用晶体管的非线性来起到稳幅作用)根据选频网络可以分为RC正弦波振荡电路,LC正弦波振荡电路和石英晶体正弦波振荡电路三种类型。 (3)是否能产生正弦波振荡的判断方法和步骤 电路中是否包含上述四个组成部分判断放大电路是否能够正常工作,即是否有合适的静态工作点且动态信号是否能够输入、输出和放大。利用瞬间极性判断电路是否满足正弦波振荡的相位条件判断电路是否满足正弦波振荡的幅值条件,即是否满足起振条件。【注意】只有在相位条件满足的情况下,判断是否满足幅值条件才有意义。 (4)RC正弦波振荡电路只介绍RC桥式正弦波振荡电路(文氏桥振荡电路) 1)RC串并联选频网络 其中R1=R2=R,C1=C2=C,输入电压为,输出电压为。 当信号频率足够低时,因而网络简化图如(b)所示。超前于,当频率趋于零时,相位超前趋于+90,且趋于零。 当信号频率足够高时,因而网络简化图如(c)所示。滞后于,当频率趋于零时,相位滞后趋于90,且趋于零。 可以想象,当频率信号从零逐渐变化到无穷大时,的相位将从+90逐渐变化到90。因此,对于RC串并联选频网络,必定存在一个频率fo,当f=fo时,与 同相。 求出RC串并联选频网络的频率特性和fo:当f=fo时 2)RC桥式正弦波振荡电路 因为当f=fo时,所以。为了满足起振条件,放大电路的电压放大倍数应略大于3。 此电路中,放大电路为负反馈即一个同相比例运算电路,正反馈网络的反馈电压是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电压放大电路,它的比例系数是电压放大倍数,其起振条件和幅值平衡条件为 (5)LC正弦波振荡电路 1)LC谐振回路的频率特性 常见的选频网络多采用LC并联网络图(a)中,无损耗,谐振频率为图(b)中,有损耗 2)变压器反馈式振荡电路 3)电感反馈式振荡电路 4)电容反馈式振荡电路3、电压比较器组成非正弦波发生电路的基本单元电路 (1)电压比较器的电压传输特性 输入电压uI是模拟信号,而输出电压uo只有两种可能:高电平UOH或低电平UOL。 使uo从UOH跃变为UOL,或者从UOL跃变为UOH的输入电压uI称为阈值电压UT。 (2)集成运放的非线性工作区 在电压比较器电路中,集成运放不是处于开环状态(即没有引入反馈),就是只引入了正反馈。uPuN (3)电压比较器的分类 1)单限比较器 电路只有一个阈值电压。 过零比较器 其阈值电压UT=0V。 为了限制集成运放的差模输入电压,保护其输入级,可加二极管限幅电路。而在实用电路中,为了满足负载的需要,常在集成运放的输出端加稳压管限幅电路,从而获得合适的UOH和UOL。 R为限流电阻,两只稳压管的稳定电压均小于集成运放的最大输出电压UOM,且正向导通电压均为UD,当uI0时,由于集成运放的输出电压uo=+UOM,故DZ1工作在稳压状态,DZ2处于导通状态,uo=UOH=+(UZ1+UD),反之,uo=UOL=-(UZ2+UD)。若要求UZ1= UZ2,则可以采用两只特性相同而又制作在一起的稳压管,稳定电压标为,当uI0时,uo=UOL=-UZ。 限幅电路的稳压管还可以跨接在集成运放的输出端和反相输入端之间: 假设稳压管截止,则集成运放必然工作在开环状态,输出电压不是+UOM就是-UOM。这样,必然导致稳压管击穿而工作在稳压状态,DZ构成负反馈电路,是反相输入端“虚地”,限流电阻上的电流等于稳压管的电流,输出电压uo= 这种电路的优点:一,集成运放的净输入电压和净输入电流均近似于零,从而保护了输入级;二,集成运放没有工作到非线性区,因而输入电压过零时,其内部的晶体管不需要从截止区逐渐进入饱和区,或从饱和区逐渐进入截止区,所以提高了输出电压的变化速度。 一般单限比较器 根据叠加原理,集成运放反相输入端的电位 ,UREF为外加参考电压 令uP=uN=0,则阈值电压 由上式可知:只要改变参考电压的大小和极性,以及两个电阻的阻值,就可以改变阈值电压的大小和极性;若要改变uI过UT时uo的跃变方向,则将同相输入端和反相输入端所接电路互换。 综上所述,分析电压传输特性三个要素的方法是: 、通过集成运放输出端所接的限幅电路来确定电压比较器的输出低电平和输出高电平、写出集成运放同相输入端和反相输入端的电位uP、uN的表达式,令uP=uN,解得的输入电压就是阈值电压。、uo在uI过UT时的跃变方向决定于uI作用于集成运放的那个输入端。 例子:在图8.2.6所示电路中,在图8.2.7中,R1=R2=5k,基准电压UREF=2V,稳压管的稳定电压;它们的输入电压均为(a)所示的三角波,试画出图8.2.6所示电路的输出电压uo1和图8.2.7所示电路输出电压uo2 2)滞回比较器 电路有两个阈值电压,与单限比较器的相同之处在于:当输入电压单一方向变化时,输出电压只跃变一次。 单限比较器很灵敏,在阈值电压附近只要有微小变化就会引起输出电压的跃变,即抗干扰能力很差。而滞回比较器具有滞回性,即具有惯性,因而有一定的抗干扰能力。 滞回比较器电路中引入了正反馈: 很容易看出,uI=uN, 令uP=uN,求出的uI就是阈值电压UT,因此得到 滞回比较器中引入了正反馈,加快了uo的下降。 若将电阻R1的接地端接参考电压UREF,如图所示: 其中, 令uP=uN,求出的uI就是阈值电压,因此得到 改变参考电压的大小和极性,滞回比较器的电压传输特性将产生水平方向的移动;改变稳压管的稳定电压可是电压传输特性产生垂直方向的移动。 3)窗口比较器双限比较器 电路有两个阈值电压,与前两种比较器的区别在于:当输入电压单一方向变化时,输出电压跃变两次。 外加参考电压URHURL,电阻R1、R2和稳压管Dz构成限幅电路。 【总结】通过以上三个比较器的分析,可得到如下结论: 在电压比较器中,集成运放多工作在非线性区,输出电压只有高电平和低电平两种可能情况一般用电压传输特性来描述输入电压和输出电压的函数关系。电压传输特性的三个要素是输出电压的高、低电平,阈值电压和输出电压的跃变方向。取决于限幅电路即up=uN时求出的uI取决于输入电压作用于同相输入端还是反相输入端 【附加】 电压比较器可将模拟信号转化为为二值信号,即只有高电平和低电平两种状态的离散信号,因此电压比较器可作为模拟电路和数字电路的接口电路。 4)集成电压比较器4、三种常用的非正弦波发生电路及波形变换电路 (1)矩形波发生电路是其它非正弦波发生电路的基础 当方波电压加载积分运算电路的输入端,输出获得三角波电压;而如果改变积分电路正向积分和反向积分的时间常数,使某一方向的积分常数趋于零,输出获得锯齿波电压。电路组成及工作原理 只用两种状态:高电平和低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路必须引入负反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。如图: RC回路既作为延迟环节,又作为反馈网络,通过RC充放电过程实现状态的自动转换。波形分析及主要参数 电路中电容正向充电和反向充电的时间常数均为R3C,而且充电的总幅值也相等,因而一个周期内uo=+Uz的时间和uo=-Uz的时间相等,uo为对称的方波,所以该电路为方波发生器。图中,矩形波的宽度Tk与周期T之比称为占空比,因此uo是占空比的1/2的矩形波。由uc(t)=uc(0)-uc()exp(-t/)+uc()可知t趋于无穷大时,uc趋于+Uz,利用一阶RC电路的三要素法可列出方程+UT=(Uz+ UT)(1- exp(-t/))+(- UT)又=R3C,t=T/2,+-UT=+-R1/(R1+R2)Uz得到振荡周期振荡频率f=1/T 占空比可调电路 可以想象要改变输出电压的占空比,就必须使电容正向和反向充电时间常数不同,即充电回路的参数不同,利用二极管的单向导电性可以引导电流流经不同的回路。 上式表明改变电位器的滑动端可以改变占空比,但不能改变周期。(2)三角波发生电路电路组成 在实际应用中,一般不采用上述波形,而是将方波发生电路中的RC充、放电回路用积分运算电路来取代,滞回比较器和积分电路的输出互为另一个电路的输入。 工作原理三角波-方波发生电路的波形图振荡频率(3)锯齿波发生电路 产生电路中的积分电路正向积分和反向积分的时间常数相差很大,那么输出电压uo上升和下降的斜率相差就会很大,这样就得到了锯齿波。利用二极管的单向导电性十几分电路两个方向的积分通路不同,就可以得到锯齿波。 (4)波形变换电路 来年各个组成部分的输出互为另一部分的输入,因此产生了自激振荡。实际上,利用基本电路就可以实现波形的变换。三角波变锯齿波电路三角波变正弦波电路滤波法折线法
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 工作总结


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!