资源描述
集合与函数概念11集合(一)集合的有关概念定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。2.表示方法:集合通常用大括号 或大写的拉丁字母A,B,C表示, 而元素用小写的拉丁字母a,b,c表示。3.集合相等:构成两个集合的元素完全一样。4.元素与集合的关系:(元素与集合的关系有“属于”及“不属于两种)若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征 确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明” (造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大 的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的. 互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为1,-2,而不是1,1,-2 无序性:即集合中的元素无顺序,可以任意排列、调换。练1:判断以下元素的全体是否组成集合,并说明理由:大于3小于11的偶数;我国的小河流;非负奇数; 方程x2+1=0的解;某校2011级新生; 血压很高的人;著名的数学家; 平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。 例如,我们A表示“120以内的所有质数”组成的集合,则有3A,4A,等等。练:A=2,4,8,16,则4A,8A,32A.(二)例题讲解:例1用“”或“”符号填空: 8 N; 0 N; -3 Z; Q; 设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。练:5页题例2已知集合P的元素为, 若2P且-1P,求实数m的值。练:考察下列对象是否能形成一个集合?身材高大的人 所有的一元二次方程直角坐标平面上纵横坐标相等的点 细长的矩形的全体比2大的几个数 的近似值的全体所有的小正数 所有的数学难题给出下面四个关系:R,0.7Q,00,0N,其中正确的个数是:( )A4个 B3个 C2个 D1个下面有四个命题:若-a,则a 若a,b,则a+b的最小值是2集合N中最小元素是1 x2+4=4x的解集可表示为2,2 其中正确命题的个数是( 由实数-a, a, ,2, -5为元素组成的集合中,最多有几个元素?分别为什么?求集合2a,a2+a中元素应满足的条件?若t,求t的值.一、集合的表示方法列举法:把集合中的元素一一列举出来, 并用花括号“”括起来表示集合的方法叫列举法。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;说明:书写时,元素与元素之间用逗号分开;一般不必考虑元素之间的顺序;在表示数列之类的特殊集合时,通常仍按惯用的次序;集合中的元素可以为数,点,代数式等;列举法可表示有限集,也可以表示无限集。当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集用列举法表示为例1用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;(3) 从51到100的所有整数的集合;(4) 小于10的所有自然数组成的集合;(5) 方程的所有实数根组成的集合; 由120以内的所有质数组成的集合。描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。一般格式:如:x|x-32,(x,y)|y=x2+1,x|直角三角形,;说明:描述法表示集合应注意集合的代表元素,如(x,y)|y= x2+3x+2与 y|y= x2+3x+2是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:整数,即代表整数集Z。辨析:这里的 已包含“所有”的意思,所以不必写全体整数。写法实数集,R也是错误的。用符号描述法表示集合时应注意:、弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?、元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。例2用描述法表示下列集合:(1) 由适合x2-x-20的所有解组成的集合;(2) 到定点距离等于定长的点的集合;(3) 方程的所有实数根组成的集合(4) 由大于10小于20的所有整数组成的集合。 说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意, 一般集合中元素较多或有无限个元素时,不宜采用列举法。练习:5页2题1用适当的方法表示集合:大于0的所有奇数2集合Ax|Z,xN,则它的元素是 。3.已知集合Ax|-3x3,xZ,B(x,y)|yx+1,xA,则集合B用列举法表示是 .判断下列两组集合是否相等? (1)A=x|y=x+1与B=y|y=x+1; (2)A=自然数与B=正整数二、集合的分类观察下列三个集合的元素个数1. 4.8, 7.3, 3.1, -9; 2. xR0x3; 3. xRx2+1=0由此可以得到集合的分类三、文氏图集合的表示除了上述两种方法以外,还有文氏图法,即3,9,27A画一条封闭的曲线,用它的内部来表示一个集合,如下图所示: 表示3,9,27表示任意一个集合A 典型例题【题型一】元素与集合的关系、设集合A,a,b,B=a,a,ab,且A=B,求实数a,b.、已知集合Aa+2,(a+1),a+3a+3若1A,求实数a的值。【题型二】元素的特征、 已知集合M=xNZ,求M已知集合C=ZxN,求C点拔:要注意M与C的区别,集合M中的元素是自然数x,满足是整数,集合C是的元素是整数,满足条件是xN练习:.给出下列四个关系式:R;Q;0N;0其中正确的个数是( ) A.1 B.2 C.3 D.4.方程组的解组成的集合是( ) A.2,1 B.-1,2 C.(2,1) D.(2,1)3. 把集合-3x3,xN用列举法表示,正确的是( ) A.3,2,1 B.3,2,1,0 C.-2,-1,0,1,2D.-3,-2,-1,0,1,2,34.下列说法正确的是( )A.0是空集B.xQZ是有限集C.xQx2+x+2=0是空集 D.2,1与1,2是不同的集合二填空题:、 以实数为元素构成的集合的元素最多有个;、 以实数a,2-a.,4为元素组成一个集合A,A中含有个元素,则的a值为 .、集合M=yZy=,xZ,用列举法表示是M。、已知集合A2a,a2-a,则a的取值范围是。三、解答题:、设Axx2+(b+2)x+b+1=0,bR求A的所有元素之和。10.已知集合Aa,2b-1,a+2bB=xx3-11x2+30x=0,若A=B,求a,b的值。集合间的基本关系比较下面几个例子,试发现两个集合之间的关系:(1),;(2),;(3),观察可得:子集:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这 两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于B,或B包含AB A表示: 当集合A不包含于集合B时,记作AB(或BA) 用Venn图表示两个集合间的“包含”关系: 集合相等定义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B 中的元素是一样的,因此集合A与集合B相等,即若,则。 如:A=x|x=2m+1,mZ,B=x|x=2n-1,nZ,此时有A=B。真子集定义:若集合,但存在元素,则称集合A是集合B的真子集。 记作:A B(或B A) 读作:A真包含于B(或B真包含A)4.空集定义:不含有任何元素的集合称为空集。记作:用适当的符号填空: ; 0 ; ; 5.几个重要的结论: 空集是任何集合的子集;对于任意一个集合A都有A。 空集是任何非空集合的真子集; 任何一个集合是它本身的子集; 对于集合A,B,C,如果,且,那么。练习:填空: 2 N; N; A; 已知集合Ax|x3x20,B1,2,Cx|x3,Bx|x3,Bx|x6,则AB 。 3.一些特殊结论 若A,则AB=A; 若B,则AB=A;若A,B两集合中,B=,,则A=, A=A。【题型一】并集与交集的运算【例1】-1123设A=x|-1x2,B=x|1x3,求AB。 解:AB=x|-1x2x|1x3=x|-1x-2,B=x|x-2x|x3=x|-2x3。【例3】已知集合Ay|y=x2-2x-3,xR,B=y|y=-x2+2x+13,xR求AB、AB【题型二】并集、交集的应用例:设集合Aa+1,3,5,B=2a+1,a2+2a,a2+2a-1,当AB=,时,求AB解:a+12 a1或-3当a1时,集合B的元素a2+2a3,2a+13,由集合的元素应具有互异性的要求可知a1.当a-3时,集合B=-5, AB=-5,5练:.已知3,4,m2-3m-1m,-=-3,则m。练习:. 设A=x|x是等腰三角形,B=x|x是直角三角形,则AB。 x|x是等腰直角三角形。设A=4,5,6,8,B=3,5,7,8,则AB。 设A=x|x是锐角三角形,B=x|x是钝角三角形,则AB。4. 已知集合Mx|x-20,则MN等于。 设A不大于20的质数,Bx|x2n+1,nN*,用列举法写出集合AB。6.已知集合Mx|y=x2-1,N=y|y=x2-1,那么MN等于()A.B.NC.MD.R7、 若集合A1,3,x,B=1,x2,AB1,3,x,则满足条件的实数x的个数有() A.1个 B.2个 C.3个 D.4个8. 满足条件M11,2,3的集合M的个数是 。9. 已知集合Ax|-1x2,B=x|2axa+3,且满足AB,则实数a的聚取值啊范 围是 。集合的基本运算思考1 U=全班同学、A=全班参加足球队的同学、B=全班没有参加足球队的同学,则U、A、B有何关系? 集合B是集合U中除去集合A之后余下来的集合。 (一). 全集、补集概念及性质:全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么 就称这个集合为全集,记作U,是相对于所研究问题而言的一个相对概念。补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集 合A相对于全集U的补集, 记作:,读作:A在U中的补集,即 Venn图表示:(阴影部分即为A在全集U中的补集) 说明:补集的概念必须要有全集的限制讨论:集合A与之间有什么关系?借助Venn图分析 巩固练习(口答):U=2,3,4,A=4,3,B=,则= ,= ;设Ux|x8,且xN,Ax|(x-2)(x-4)(x-5)0,则 ; 设U三角形,A锐角三角形,则 。 【题型1】求补集【例1】设全集, 求,【例2】设全集,求, ,。 (结论:)【例3】设全集U为R,若 ,求。(答案:)【例4】设全集Ux|-1x3,A=x|-1x3,B=x|x2-2x-3=0,求,并且判断和集合B的关系。【题型1】集合的混合运算已知全集为R,集合P=x|xa2+4a+1,aR,Q=y|y-b2+2b+3,bR求PQ和P。(III)课堂练习: 若S=2,3,4,A=4,3,则CSA=2 ;若S=三角形,B=锐角三角形,则CSB=直角三角形或钝角三角形 ; 若S=1,2,4,8,A=,则CSA= S ; 若U=1,3,a2+2a+1,A=1,3,CUA=5,则a= ;-1已知A=0,2,4,CUA=-1,1,CUB=-1,0,2,求B=1,4;设全集U=2,3,m2+2m-3,A=|m+1|,2,CUA=5,求m的值;(m= - 4或m=2) 已知全集U=1,2,3,4,A=x|x2-5x+m=0,xU,求CUA、m;(答案:CUA=2,3,m=4;CUA=1,4,m=6)已知全集U=R,集合A=x|00,A=1,3,5,7,9,B=1,4,7,10,且,试 求p、q;集合A=x|x2+px-2=0,B=x|x2-x+q=0,若AB=-2,0,1,求p、q;A=2,3,a2+4a+2,B=0,7,a2+4a-2,2-a,且AB =3,7,求B22.某班举行数、理、化三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,求全班人数。集合中元素的个数在研究集合时,经常遇到有关集合中元素的个数问题。我们把含有有限个元素的集合A叫做有限集,用card(A)表示集合A中元素的个数。例如:集合A=a,b,c中有三个元素,我们记作card(A)=3. 结论:已知两个有限集合A,B,有:card(AB)=card(A)+card(B)-card(AB). 例1 学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同学参赛? 解设A=田径运动会参赛的学生,B=球类运动会参赛的学生,AB=两次运动会都参赛的学生,AB=所有参赛的学生因此card(AB)=card(A)+card(B)-card(AB)=8+12-3=17.答:两次运动会中,这个班共有17名同学参赛.在某校高一(5)班的学生中参加物理课外小组的有20人参加数学课外小 组的有25人,既参加数学课外小组又参加物理课外小组的有10人,既未参加物理课外小组又未参加数学课外小组的有15人,则 这个班的学生总人数是A. 70 B. 55 C. 50 D. 无法确定. 给出下列命题: 给出下列命题: 若card(A)=card(B),则A=B; 若card(A)=card(B), 则card(AB)=card(AB) , 若AB= 则card(AB)-card(A)=card(B) 若A= ,则card(AB)=card(A) 若A B,则card(AB)=card(A) , 其中正确的命题的序号是高一数学必修1 集合练习题1一选择题1下列说法正确的是()A某个村子里的年青人组成一个集合B所有小正数组成的集合C集合,和,表示同一个集合D这些数组成的集合有五个元素2下面有四个命题:()集合中最小的数是否;()是自然数;(),是不大于的自然数组成的集合;()其中正确的命题的个数是()A个个个个3给出下列关系:()()()()其中正确的个数为()个个个个4给出下列关系:()是空集;()()集合()集合其中正确的个数为()个个个个下列四个命题:()空集没有了集;()空集是任何一个集合的真子集;()空集的元素个数为零;()任何一个集合必有两个或两个以上的子集其中正确的有()0个1个2个3个已知集合那么等于(),已知全集集合()二填空题方程的解集为用列举法表示为_.用列举法表示不等式组的整数解集合为_.10已知菱形,正方形,平行四边形,那么,之间的关系是_.11已知全集,集合,则用列举法表示为_.三解答题12已知13已知14若集合则满足于条件的实数的个数有()个个个个15设集合,则实数_16已知全集那么17. 18设求a的取值范围19试用适当的符号把连接起来20已知集合 的值或取值范围第1讲 1.1.1 集合的含义与表示学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.知识要点:1. 把一些元素组成的总体叫作集合(set),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“ ”括起来,基本形式为,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为,既要关注代表元素x,也要把握其属性,适用于无限集.3. 通常用大写拉丁字母表示集合. 要记住一些常见数集的表示,如自然数集N,正整数集或,整数集Z,有理数集Q,实数集R.4. 元素与集合之间的关系是属于(belong to)与不属于(not belong to),分别用符号、表示,例如,.例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程的所有实数根组成的集合;(2)大于2且小于7的整数.解:(1)用描述法表示为:; 用列举法表示为.(2)用描述法表示为:; 用列举法表示为.【例2】用适当的符号填空:已知,则有: 17 A; 5 A; 17 B.解:由,解得,所以;由,解得,所以;由,解得,所以.【例3】试选择适当的方法表示下列集合:(教材P6 练习题2, P13 A组题4)(1)一次函数与的图象的交点组成的集合; (2)二次函数的函数值组成的集合;(3)反比例函数的自变量的值组成的集合.解:(1).(2).(3).点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为,也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合,试用列举法表示集合A解:化方程为:应分以下三种情况:方程有等根且不是:由 =0,得,此时的解为,合方程有一解为,而另一解不是:将代入得,此时另一解,合方程有一解为,而另一解不是:将代入得,此时另一解为,合综上可知,点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲 1.1.2 集合间的基本关系学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn图表达集合间的关系.知识要点:1. 一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset),记作(或),读作“A含于B”(或“B包含A”).2. 如果集合A是集合B的子集(),且集合B是集合A的子集(),即集合A与集合B的元素是一样的,因此集合A与集合B相等,记作. 3. 如果集合,但存在元素,且,则称集合A是集合B的真子集(proper subset),记作AB(或BA).4. 不含任何元素的集合叫作空集(empty set),记作,并规定空集是任何集合的子集.5. 性质:;若,则; 若,则;若,则.例题精讲:【例1】用适当的符号填空:(1)菱形 平行四边形; 等腰三角形 等边三角形.(2) ; 0 0; 0; N 0.解:(1), ;(2)=, , ,.B A B C D【例2】设集合,则下列图形能表示A与B关系的是( ).解:简单列举两个集合的一些元素,易知BA,故答案选A另解:由,易知BA,故答案选A【例3】若集合,且,求实数的值.解:由,因此,.(i)若时,得,此时,;(ii)若时,得. 若,满足,解得.故所求实数的值为或或.点评:在考察“”这一关系时,不要忘记“” ,因为时存在. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A=a,a+b,a+2b,B=a,ax,ax2. 若A=B,求实数x的值.解:若a+ax2-2ax=0, 所以a(x-1)2=0,即a=0或x=1.当a=0时,集合B中的元素均为0,故舍去;当x=1时,集合B中的元素均相同,故舍去.若2ax2-ax-a=0.因为a0,所以2x2-x-1=0, 即(x-1)(2x+1)=0. 又x1,所以只有.经检验,此时A=B成立. 综上所述.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 1.1.3 集合的基本运算(一)学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集交集补集概念由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(union set)由属于集合A且属于集合B的元素所组成的集合,称为集合A与B的交集(intersection set)对于集合A,由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集(complementary set)记号(读作“A并B”)(读作“A交B”)(读作“A的补集”)符号图形表示UA例题精讲:【例1】设集合.AB-1359x解:在数轴上表示出集合A、B,如右图所示:,【例2】设,求:(1); (2).解:.(1)又,;(2)又,得. .【例3】已知集合,且,求实数m的取值范围.-2 4 m xB A 4 m x解:由,可得.在数轴上表示集合A与集合B,如右图所示:由图形可知,.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集,求, ,并比较它们的关系. 解:由,则. 由,则 由,则,.由计算结果可以知道,.另解:作出Venn图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn图研究与 ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 1.1.3 集合的基本运算(二)学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.知识要点:1. 含两个集合的Venn图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:,.2. 集合元素个数公式:.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.例题精讲:【例1】设集合,若,求实数的值.解:由于,且,则有:当解得,此时,不合题意,故舍去;当时,解得.不合题意,故舍去;,合题意.所以,.【例2】设集合,求, .(教材P14 B组题2)解:.当时,则,;当时,则,;当时,则,;当且且时,则,.点评:集合A含有参数a,需要对参数a进行分情况讨论. 罗列参数a的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A =|, B =|,若AB=B,求实数的值解:先化简集合A=. 由AB=B,则BA,可知集合B可为,或为0,或4,或.(i)若B=,则,解得;(ii)若B,代入得=0=1或=,当=1时,B=A,符合题意;当=时,B=0A,也符合题意(iii)若4B,代入得=7或=1,当=1时,已经讨论,符合题意;当=7时,B=12,4,不符合题意综上可得,=1或点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法解该题时,特别容易出现的错误是遗漏了A=B和B=的情形,从而造成错误这需要在解题过程中要全方位、多角度审视问题. 【例4】对集合A与B,若定义,当集合,集合时,有= . (由教材P12 补集定义“集合A相对于全集U的补集为”而拓展)解:根据题意可知,由定义,则.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A中排除B的元素. 如果再给定全集U,则也相当于.第5讲 1.2.1 函数的概念学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.知识要点:1. 设A、B是非空的数集,如果按某个确定的对应关系,使对于集合A中的任意一个数,在集合B中都有唯一确定的数和它对应,那么就称:AB为从集合A到集合B的一个函数(function),记作=,其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range).2. 设a、b是两个实数,且ab,则:x|axba,b 叫闭区间; x|axb(a,b) 叫开区间;x|axb, x|a1, f()=()3+()-3=2+=,即ff(0)=.【例3】画出下列函数的图象:(1); (教材P26 练习题3)(2). 解:(1)由绝对值的概念,有.所以,函数的图象如右图所示.(2),所以,函数的图象如右图所示. 点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数的函数值表示不超过x的最大整数,例如,当时,写出的解析式,并作出函数的图象. 解:. 函数图象如右:点评:解题关键是理解符号的概念,抓住分段函数的对应函数式.第7讲 1.3.1 函数的单调性学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.知识要点:1. 增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数(increasing function). 仿照增函数的定义可定义减函数.2. 如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x、x给定区间,且xx;计算f(x)f(x) 判断符号下结论.例题精讲:【例1】试用函数单调性的定义判断函数在区间(0,1)上的单调性.解:任取(0,1),且. 则. 由于,故,即. 所以,函数在(0,1)上是减函数. 【例2】求二次函数的单调区间及单调性.解:设任意,且. 则 .若,当时,有,即,从而,即,所以在上单调递增. 同理可得在上单调递减.【例3】求下列函数的单调区间:(1);(2).解:(1),其图象如右. 由图可知,函数在上是增函数,在上是减函数.(2),其图象如右.由图可知,函数在、上是增函数,在、上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y轴右侧的图象,并把y轴右侧的图象对折到左侧,得到的图象. 由图象研究单调性,关键在于正确作出函数图象.【例4】已知,指出的单调区间.解: , 把的图象沿x轴方向向左平移2个单位,再沿y轴向上平移3个单位,得到的图象,如图所示.由图象得在单调递增,在上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知平移变换规律. 第8讲 1.3.1 函数最大(小)值学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.知识要点:1. 定义最大值:设函数的定义域为I,如果存在实数M满足:对于任意的xI,都有M;存在x0I,使得 = M. 那么,称M是函数的最大值(Maximum Value). 仿照最大值定义,可以给出最小值(Minimum Value)的定义.2. 配方法:研究二次函数的最大(小)值,先配方成后,当时,函数取最小值为;当时,函数取最大值.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.例题精讲:【例1】求函数的最大值.解:配方为,由,得.所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润. 解:设他将售出价定为x元,则提高了元,减少了件,所赚得的利润为.即. 当时,.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元.【例3】求函数的最小值. 解:此函数的定义域为,且函数在定义域上是增函数, 所以当时,函数的最小值为2.点评:形如的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令,则,所以,在时是增函数,当时,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1); (2).解:(1)二次函数的对称轴为,即.画出函数的图象,由图可知,当时,; 当时,. 所以函数的最大值为4,最小值为.(2).作出函数的图象,由图可知,. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 1.3.2 函数的奇偶性学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.知识要点:1. 定义:一般地,对于函数定义域内的任意一个x,都有,那么函数叫偶函数(even function). 如果对于函数定义域内的任意一个x,都有),那么函数叫奇函数(odd function).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别与的关系.例题精讲:【例1】判别下列函数的奇偶性:(1); (2);(3).解:(1)原函数定义域为,对于定义域的每一个x,都有 , 所以为奇函数.(2)原函数定义域为R,对于定义域的每一个x,都有 ,所以为偶函数.(3)由于,所以原函数为非奇非偶函数.【例2】已知是奇函数,是偶函数,且,求、.解: 是奇函数,是偶函数, ,. 则,即.两式相减,解得;两式相加,解得.【例3】已知是偶函数,时,求时的解析式.解:作出函数的图象,其顶点为. 是偶函数, 其图象关于y轴对称. 作出时的图象,其顶点为,且与右侧形状一致, 时,.点评:此题中的函数实质就是. 注意两抛物线形状一致,则二次项系数a的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.【另解】当时,又由于是偶函数,则,所以,当时,.【例4】设函数是定义在R上的奇函数,且在区间上是减函数,实数a满足不等式,求实数a的取值范围.解: 在区间上是减函数, 的图象在y轴左侧递减.又 是奇函数, 的图象关于原点中心对称,则在y轴右侧同样递减.又 ,解
展开阅读全文