资源描述
福建师范大学21秋近世代数平时作业一参考答案1. 曲线y=x2与x=y2所围图形绕x轴旋转所得的旋转体的体积为_。曲线y=x2与x=y2所围图形绕x轴旋转所得的旋转体的体积为_。2. 设汞的密度与温度的关系为=a0+a1t+a2t2+a3t3,经实验收集了四组数据:当温度为0、10、20、30(单位:)时,汞的设汞的密度与温度的关系为=a0+a1t+a2t2+a3t3,经实验收集了四组数据:当温度为0、10、20、30(单位:)时,汞的密度分别为13. 60、13. 57、13.55、13.52(单位:t/m3)请估计当温度为15时,汞的密度为多少13.56t/m33. 因为一元函数y=f(x)在点x0处的可微性与可导性是等价的,所以有人说“微分就是导数,导数就是微分”,这种说法对因为一元函数y=f(x)在点x0处的可微性与可导性是等价的,所以有人说“微分就是导数,导数就是微分”,这种说法对吗?该说法不对 从概念上讲,微分是从求函数增量引出线性主部而得到的,导数是从函数变化率问题归纳出函数增量与自变量增量之比的极限,它们是完全不同的概念 从几何意义上讲,函数在某点的导数的几何意义是该函数表示的曲线方程在该点的切线的斜率;函数在某点的微分的几何意义是该函数表示的曲线方程在该点的纵坐标的增量 4. 求出等于下列表达式的一个二项式系数求出等于下列表达式的一个二项式系数运用Pascal公式,可得 还可运用组合学方法证明。这只要考虑对集合a1,a2,an,b1,b2,b3的k-组合以如下方式形成:从n个a中取k个a,再从3个b中取0个b;或者从n个a中取k-1个a,再从3个b中取1个b;或者从n个a中取k-2个a,再从3个b中取2个b;或者从n个a中取k-3个a,再从3个b中取3个b。因此 5. 若n阶方阵A,B满足AB=A+B,则(A-E)-1=_.若n阶方阵A,B满足AB=A+B,则(A-E)-1=_.B-E.6. 一个mn的棋盘只有白色与黑色两种方格,其中m和n都是奇数。如果黑色方格比白色方格多一个方格,试证明:当棋盘一个mn的棋盘只有白色与黑色两种方格,其中m和n都是奇数。如果黑色方格比白色方格多一个方格,试证明:当棋盘上恰有一个黑方格禁止放子,那么该棋盘有一个用多米诺牌的完美覆盖。设禁止放子的黑方格位于第i行第j列上。下面分别就i与j的不同奇偶性情况进行讨论。 (1)i与j同为偶数或同为奇数。此时,将棋盘划分为如图7.14所示的区域A1(为i(j-1)的区域)、区域A2(为(m-i)j的区域)、区域A3(为(i-1)(n-j+1)的区域)、区域A4(为(m-i+1)(n-j)的区域)以及禁止放子的黑方格(图中阴影部分)。由于A1,A2,A3与A4无论i与j同为偶数还是同为奇数,总有偶数边长,故可知,它们都有完美覆盖。 (2)i与j为一奇一偶。此时,如果不要求白格与黑格的位置,则不一定存在完美覆盖,如在图7.15中,第1行中第2格是禁止放子的黑格。如果要求棋盘行和列之间都是黑白格相间,则i与j的一奇一偶情况不会出现。事实上,不妨设i为奇,j为偶。由于黑格比白格多一个,故第1行上第1个格是黑格。则第i行第1个格是黑格,从而第i行上只有偶数列上方格是白格。 7. 求微分方程y+2y&39;-3y=2ex-1的通解求微分方程y+2y-3y=2ex-1的通解8. f和g在点x0连续,若f(x0)g(x0),则存在U(x0,),使在其内有f(x)g(x)。( )f和g在点x0连续,若f(x0)g(x0),则存在U(x0,),使在其内有f(x)g(x)。( )正确答案: 9. 已知某账户的当前余额为1000000元,甲在第1年底提出1500000元,在第2年底又投入900000元计算该项目中甲的收已知某账户的当前余额为1000000元,甲在第1年底提出1500000元,在第2年底又投入900000元计算该项目中甲的收益率对投资一方来说,有 B0=1000000元0元,B1=1000000(1+i)-1500000元, B2=1000000(1+i)2-1500000(1+i)+900000元 =10000100i2+50i+40元0元 也就是说,对于任何利率i,投资者甲的最终结果(在第2年底)都是亏损例如:当i=0.1时,甲在第1年底提出1500000元,提款之后的余额为1000000(1+0.1)-1500000元=-400000元,那么,在第2年底,以利率i=0.1计算得投资者最多可以借出400000(1+0.1)元=440000元900000元换个角度看,在这个项目中,无论考虑什么样的年利率,都不能刻画该项目的亏损情况 10. 判别一个正项级数的收敛性,一般可以按怎样的程序选择审敛法?判别一个正项级数的收敛性,一般可以按怎样的程序选择审敛法?一般而言,经过一定的训练以后,往往根据所给正项级数的特点,大致可以确定使用何种审敛法来判定级数的收敛性,但这对初学者来说,有时可能感到困难,这时可按下面的程序进行考虑: (1)检查一般项,若,可判定级数发散否则进入(2). (2)用比值审敛法(或根值审敛法)判定倘若或极限不存在,则进入(3). (3)用比较审敛法或极限形式的比较审敛法若无法找到适用的参照级数,则进入(4). (4)检查正项级数的部分Sn和是否有界或判别Sn是否有极限 11. 求曲面M:z=axy(a0)上两坐标曲线x=x0与y=y0之间的夹角求曲面M:z=axy(a0)上两坐标曲线x=x0与y=y0之间的夹角正确答案:解设曲面M的参数表示为x(xy)=(xyaxy)则xx=(10ay) xy=(01ax)E=xx.xx=1+a2y2 G=xy.xy=1+a2x2F=xx.xy=a2xy第1基本形式为I=Edx2+2Fdxdy+Gdy2=(1+a2y2)dx2+2a2xy dxdy+(1+(a2x2)dy2设坐标曲线x=x0的方向为(01)y=y0的方向(10)则两坐标曲线x=x0与y=y0的夹角的余弦为rn故rn解设曲面M的参数表示为x(x,y)=(x,y,axy),则xx=(1,0,ay),xy=(0,1,ax),E=xx.xx=1+a2y2,G=xy.xy=1+a2x2,F=xx.xy=a2xy第1基本形式为I=Edx2+2Fdxdy+Gdy2=(1+a2y2)dx2+2a2xydxdy+(1+(a2x2)dy2设坐标曲线x=x0的方向为(0,1),y=y0的方向(1,0),则两坐标曲线x=x0与y=y0的夹角的余弦为故12. 直接证明下列级数的敛散性如果收敛,求其和 (1) (2) (3) (4),m1 (5),a,bR+直接证明下列级数的敛散性如果收敛,求其和(1)(2)(3)(4),m1(5),a,bR+(1)因为,所以 于是因此级数收敛,且其和为 (2)因为 所以 于是 因此级数收敛,且其和为 (3)因为 ,所以 因为不存在,所以不存在,故级数发散 (4)因为 而m1,所以,于是因此级数收敛,且其和为m (5)因为,所以和均收敛,且 , 根据收敛级数的性质得知收敛,且其和为 13. 对事件A,B,说明下列关系式相互等价: (1); (2) (3)A+B=B; (4)AB=A; (5)对事件A,B,说明下列关系式相互等价:(1);(2)(3)A+B=B;(4)AB=A;(5)用文氏图表示事件A,B的关系即可看出(1)、(3)、(4)、(5)是相互等价的,即 又有 于是可得(2)与(1)、(3)、(4)、(5)也是相互等价的。 14. 比较组合逻辑电路和时序逻辑电路的测试方法。比较组合逻辑电路和时序逻辑电路的测试方法。组合逻辑电路测试方法有穷举法、一维通路敏化法、布尔差分法和D算法等。时序逻辑电路测试的主要方法是把时序电路构造成相应的组合电路。15. 若f(x)dx=F(x)+C,则xf(x2)dx=_若f(x)dx=F(x)+C,则xf(x2)dx=_16. 设2x3-x2+3x-5=a(x-2)3+b(x-2)2+c(x-2)+d,求a,b,c,d 提示:应用综合除法 设2x3-x2+3x-5=a(x-2)3+b(x-2)2+c(x-2)+d,求a,b,c,d提示:应用综合除法 由 可知,以x-2除f(x)得余数d;再以x-2除商q1(x)得余数c;再以x-2除第二次商q2(x)得余数b,易知a=2,也是第三次除法所得之商 算式如下: 结果有 f(x)=2x3-x2-3x-5 =2(x-2)3+11(x-2)2+23(x-2)+13 17. 求曲线y=cosx在点的切线和法线方程求曲线y=cosx在点的切线和法线方程切线方程 法线方程 18. 对于下列修正的Newton公式 设f(x*)=0,f(x*)0 试证明:该方法至少是二阶收敛的对于下列修正的Newton公式设f(x*)=0,f(x*)0试证明:该方法至少是二阶收敛的证明 设 因为f(x*)=0 且f(x*)0 所以x*是f(x)=0的单根 所以在xk与xk+f(xk)之间 f(x+f(x)-f(x)=f()f()f(x) 因为 且 所以所以迭代法收敛于x* 因为 所以 所以修正的Newton法至少二阶收敛 19. 计算第一类曲线积分Lf(x,y)ds时,要注意哪些问题?计算第一类曲线积分Lf(x,y)ds时,要注意哪些问题?(1)如果积分弧段L用显式方程y=y(x)(axb)给出,则可把它当作特殊的参数方程x=t,y-y(t)(atb)的情形来处理但此时有一点要注意:有些可用参数方程统一表示的曲线(特别如闭曲线),若用显式方程y=y(x)(或x=x(y)来表示,也许需要分弧段表示比如圆L:x=cost,y=sint(0t2),若用显式方程表示则需分成上半圆L1:(-1x1)和下半圆L2:(-1x1),这时计算在L上的第一类曲线积分就要分别计算在L1和L2上的第一类曲线积分,然后把结果相加 如果积分弧段L用极坐标方程=()()表示,则可把它看作是特殊的参数方程 x=()cos, y=()sin() 的情形处理容易算得,此时 (2)如同重积分那样,也可以利用对称性来化简第一类曲线积分的计算,有关结论与重积分的情况类似比如,若积分弧段L关于x轴对称,而被积函数f(x,y)关于y是奇函数,则Lf(x,y)ds=0;若f(x,y)关于y是偶函数,则Lf(x,y)ds=2L1f(x,y)ds,其中L1是L上的y0的那一部分弧段又若L关于直线y=x对称,则Lf(x,y)ds=Lf(y,x)ds,等等读者可类比得出其他情况下的结论 计算第一类曲线积分时,还可以利用积分弧段L的方程来化简被积函数(计算第二类曲线积分时也可以这样处理)由于积分变量x,y取在L上,故x,y满足L的方程,因此,需要时可将L的方程代入被积函数,达到化简的目的,这是计算曲线积分(以及以后的曲面积分)特有的方法 20. 设3个向量a,b,c两两相互垂直,并且|a|=1,|b|=2,|c|=3,则|a+b+c|=_,|ab+bc+ca|=_。<设3个向量a,b,c两两相互垂直,并且|a|=1,|b|=2,|c|=3,则|a+b+c|=_,|ab+bc+ca|=_。721. 最大似然估计的统计思想是什么?最大似然估计的统计思想是什么?22. 证明:函数在原点处的两个偏导数都不存在,但函数在原点有极大值证明:函数在原点处的两个偏导数都不存在,但函数在原点有极大值记z=f(x,y),则 可知 因此不存在,即z关于x的偏导数,在点(0,0)处不存在 相仿可证z关于y的偏导数在点(0,0)处不存在 由于f(0,0)=1,当x2+y20时, 可知在原点处取得极大值关于z在原点处的两个偏导数,直接由定义可验证不存在,z在原点处极值问题可以由极值的定义判定 23. 设y1(x),y2(x)均为方程 yP(x)yQ(x)的解,并且y(x)y2(x)试写出此方程的通解设y1(x),y2(x)均为方程 yP(x)yQ(x)的解,并且y(x)y2(x)试写出此方程的通解正确答案:因为y1(x)y2(x)均为方程yP(x)yQ(x)的解所以y1(x)y2(x)为对应齐次方程yP(x)y0的解从而 ycy1(x)y2(x)为齐次方程的通解其中C为任意常数rn 因此yP(x)yQ(x)的通解为 ycy1(x)一y2(x)y1(x)因为y1(x),y2(x)均为方程yP(x)yQ(x)的解,所以y1(x)y2(x)为对应齐次方程yP(x)y0的解从而ycy1(x)y2(x)为齐次方程的通解,其中C为任意常数因此,yP(x)yQ(x)的通解为ycy1(x)一y2(x)y1(x)24. 长为2l的杆,质量均匀分布,其总质量为M,在其中垂线上高为h和有一质量为m的质点,求它们之间引力的大小长为2l的杆,质量均匀分布,其总质量为M,在其中垂线上高为h和有一质量为m的质点,求它们之间引力的大小建立如下图所示的坐标系,取x为积分变量,x-l,l任取一微元x,x+dx,小段与质点的距离为,质点对小段的引力为 铅垂方向的分力元素为 由对称性在水平方向的分力为Fx=0 25. 设f(x,y)关于y在R上满足Lipschitz条件:对任意的R,R,有 , (7.14) 其中L称为Lipschitz常数对后退欧拉公设f(x,y)关于y在R上满足Lipschitz条件:对任意的R,R,有,(7.14)其中L称为Lipschitz常数对后退欧拉公式yi+1=yi+hf(xi+1,yi+1)(7.15)进行迭代求解(7.16)证明当h满足hL1时,此迭代过程是收敛的首先证明是Cauchy序列由 两边取绝对值并利用条件(7.14)得 ,k=1,2,3, 递推得 ,k=1,2,3, 对任意的l,m(lm),有 因为hL1,所以任给0,存在N,当lmN时, 因而是Cauchy序列,从而存在,设其值为y* 在(7.16)的两边令k,则得y*=yi+hf(xi+1,y*)因而 26. 如果一个代数系统(A,*),含有单位元素,那么什么条件下可以保证一个元素的左逆元素必定等于右逆元素,且一个元如果一个代数系统(A,*),含有单位元素,那么什么条件下可以保证一个元素的左逆元素必定等于右逆元素,且一个元素的逆元素是唯一的,并给予证明“*”运算要是可结合的设aA,有左逆元a-1和右逆元a-1,则 al-1=al-1*e=al-1*(a*(ar-1)=(al-1*a)*ar-1=e*ar-1=ar-1 即有左、右逆元相等:al-1=ar-1 假设a有两个逆元al-1,ar-1,则: a1-1=a1-1*e=a1-1*(a*a2-1)=(a1-1*a)*2-1=e*a2-1=a2-1, 即a的逆元唯一 27. 验证极限存在,但不能用洛必达法则求出验证极限存在,但不能用洛必达法则求出若用洛必达法则,则因 不存在故题设极限不能用洛必达法则求出 28. 设随机变量X的分布函数为,求常数A,以及满足条件PXc=2PXc的常数c设随机变量X的分布函数为,求常数A,以及满足条件PXc=2PXc的常数cA=2/,29. 设f(x)在(,)内可导,且F(x)f(x21)f(1x2),证明:F(1)F(1)设f(x)在(,)内可导,且F(x)f(x21)f(1x2),证明:F(1)F(1)正确答案:证明:F(x)=f(x21)f(1x2)f(x)在(,)内可导F(x)为可导函数F(x)f(x21)2x+f(1x2)(2x)2xf(x21)f(1x2)F(1)2f(0)f(0)0F(1)(2)f(0)f(0)0F(1)F(1)30. 设P(A)0,P(B)0,则_正确 A若A与B独立,则A与B必相容 B若A与B独立,则A与B必互不相容 C若A与B互设P(A)0,P(B)0,则_正确A若A与B独立,则A与B必相容B若A与B独立,则A与B必互不相容C若A与B互不相容,则A与B必独立D若A与B相容,则A与B必独立A因为P(A)0,P(B)0,所以,若A与B独立,则 P(AB)=P(A)P(B)0 从而AB,即A与B相容,所以选项A正确,而选项B不正确 A的等价命题也成立,即若A与B互不相容,则A与B必不独立,所以C不正确,D显然不正确 故应选A 31. 求直线l1:与直线l2:的公垂线方程求直线l1:与直线l2:的公垂线方程根据题意知公垂线的方向向量可取 , l1与公垂线所确定平面1的法向量为 , 点(9,-2,0)在平面1上,故1的方程为 -16(x-9)-27(y+2)-17(z-0)=0, 即 16x+27y+17z-90=0. 同理,l2与公垂线所确定平面H2的法向量为 , 点(0,-7,7)在平面2上,故2的方程为 58(x-0)+6(y+7)+31(z-7)=0, 即 58x+6y+31z-175=0. 1与2的交线即为l1与l2的公垂线,故公垂线方程为 32. 设A=a1,a2,a3,a4,a5,R是A上的二元关系,其关系矩阵 试说明关系R不是传递关系。设A=a1,a2,a3,a4,a5,R是A上的二元关系,其关系矩阵试说明关系R不是传递关系。由于a12=1,a24=1,所以有(a1,a2)R和(a2,a4)R,但a14=0,即(a1,a4)R,由此说明R不是传递关系。33. 用对称式方程及参数方程表示直线用对称式方程及参数方程表示直线设直线的方向向量为n,则可取 再在直线上取一点,例如,可令z=0,得 于是,直线的对称式方程 参数式方程为 34. 设an,bn二收敛级数中至少有一个为绝对收敛,又设cn=a0bn+a1bn-1+anb0,则cn必收敛,且 墨吞斯设an,bn二收敛级数中至少有一个为绝对收敛,又设cn=a0bn+a1bn-1+anb0,则cn必收敛,且墨吞斯可假定bn为绝对收敛于是根据假设便有 置n=|b0|+|b1|+|bn|,n=c0+c1+cn则 n=(a0+a1+a2+an)(b0+b1+b2+bn)-b1an- b2(an+an-1)-b3(an+an-1+an-2)-bn(an+an-1+a1)=snsn-b1(sn-sn1)-b2(sn-sn-2)-bn(sn-s0) 故 现在的情况很明白,由于 故对于任意给定的0,总可选取n,m以及n-m都充分地大,使得 |n-ss|snsn-ss|+(m-0)-A,此处A=max|sn-sn-j|(m+1jn)又|snsn-ss|亦可使之小于所设由于为任意而A及m均系有界,故得|n-ss|0 35. 盒子中有10个球,其中8个白球和2个红球,由10个人依次取球不放回,求第二人取出红球的概率盒子中有10个球,其中8个白球和2个红球,由10个人依次取球不放回,求第二人取出红球的概率0.236. 9某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,试求他拨号不超过三次就能接通电话的9某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,试求他拨号不超过三次就能接通电话的概率是多少?若记得最后一位是奇数,则此概率又是多少?此人必定在十次之内接通此号码,将此十次看做是10个箱子,编号为1,2,10把正确的号码看做一个球,此球置于第n号箱子中,表示此人拨n次才能接通电话,球的放置方法共10种以4表示“不超过三次就能接通电话”这一事件,则A的有利场合就是将球置入前三个箱子中,共有三种,故P(A) =3/10=0.3 若记得最后一位是奇数,则多只需拨五次就能接通电话。故样本点总数为5,P(A) =3/5=0.6 37. 证明f-gf-g证明f-gf-g证明 f=(f-g)+gf-g+g 所以f-gf-g 38. y=y&39;2eyy=y2ey已解出y;不显含x令y=p,有y=p2ep及解为y=p2ey,x=(p+1)ep+c另外有解y=039. 设f(x)在区间a,b上连续,则函数在区间a,b上一定( ) A连续 B可导 C可积 D有界设f(x)在区间a,b上连续,则函数在区间a,b上一定()A连续B可导C可积D有界ABCD解 全都成立首先,由于f(x)在a,b连续,故在a,b上成立F(x)=f(x),这说明F(x)于a,b上可导,再从可导推出连续,而闭区间上连续函数必有界,闭区间上连续函数必定可积等一般结果知,其他选项正确40. 1设F(x)是连续型随机变量的分布函数,x1,x2为数轴上任意两点,且有x1x2,则( )不一定成立 AF(x1)1设F(x)是连续型随机变量的分布函数,x1,x2为数轴上任意两点,且有x1x2,则()不一定成立AF(x1)2)BF(x1)F(x2)CF(x)在x1处连续DF(x2)-F(x1)=P(x1xx2)A41. 函数2(e2x-e-2x)的原函数有( ) A(ex+e-x)2 B(ex-e-x)2 Cex+e-x D4(e2x+e-2x)函数2(e2x-e-2x)的原函数有()A(ex+e-x)2B(ex-e-x)2Cex+e-xD4(e2x+e-2x)AB用求导的方法,可以验证A,B正确42. 若f(x)dx=x+C,则f(1-x)dx=_。若f(x)dx=x+C,则f(1-x)dx=_。x+C43. 求微分方程xy&39;-y=x3+3x2-2x的通解求微分方程xy-y=x3+3x2-2x的通解44. 重积分的被积表达式f(x,y)d,f(x,y,z)dV的含义是什么?重积分的被积表达式f(x,y)d,f(x,y,z)dV的含义是什么?正确答案:45. 用来表明同类现象在不同空间、不同时间、实际与计划对比变动情况的相对数称_指数。用来表明同类现象在不同空间、不同时间、实际与计划对比变动情况的相对数称_指数。广义46. 设M=1,2,3),与是M的置换:,求-1,-1设M=1,2,3),与是M的置换:,求-1,-1 47. 若函数f(x)在(a,b)内具有二阶导函数,且 f(x1)=f(x2)=f(x3)(ax1x2x3b),证明:在(x1,x3)内至少有一点,使若函数f(x)在(a,b)内具有二阶导函数,且f(x1)=f(x2)=f(x3)(ax1x2x3b),证明:在(x1,x3)内至少有一点,使得f()=0显然f(x)在(a,b)内连续可导,故f(x)在x1,x2及x2,x3上连续,在(x1,x2)及(x2,x3)上可导,于是由罗尔定理知,2(x2,x3),使得 f(1)=f(2)=0 (12),又,故f(x)在1,2上连续可导,再次应用罗尔定理知, 使得f()=0, (x1,x3) 48. 求下列函数的微分: (1)y=acos3x(a0); (2)y=(1+x2)xesx求下列函数的微分:(1)y=acos3x(a0);(2)y=(1+x2)xesx(1)因为y=(acos23x)=acos23x2cos3x(-3sin3x)lna, 所以 dy=-6sin3xcos3xInaacos23xdx =-3sin6xlnaacos23xdx (2)y=(1+x2)secxsecxln(1+x2) 故有 49. 设f(x)在0,1上连续,取正值且单调减少,证明设f(x)在0,1上连续,取正值且单调减少,证明作 (因f(x)单调减少,f(t)-f(x)0,0tx)要证,作辅助函数只要证F()0,证F(x)0即可,这种函数不等式的证明可用微分学方法 50. 设A,B,C为三相异共线点,求证:可适当选择A,B的齐次坐标a,b,而使cab,其中c是C点的齐次坐标,写出设A,B,C为三相异共线点,求证:可适当选择A,B的齐次坐标a,b,而使cab,其中c是C点的齐次坐标,写出对偶情况正确答案:设ABC的齐次坐标分别为a1、b1、c则根据定理34存在常数lm使cla1mb1rn 因为ABC为不同的点所以l0m0取A点的坐标为la1B点的坐标为mb1则有cab设A,B,C的齐次坐标分别为a1、b1、c,则根据定理34,存在常数l,m,使cla1mb1,因为A,B,C为不同的点,所以l0,m0,取A点的坐标为la1,B点的坐标为mb1,则有cab51. 给定微分方程组 , 其中f(x,y)有连续一阶偏导数试证明在原点邻域内如f0则零解为渐近稳定的,而f0则零解给定微分方程组,其中f(x,y)有连续一阶偏导数试证明在原点邻域内如f0则零解为渐近稳定的,而f0则零解不稳定取定正,有V=-(x2+y2)f(x,y)当f0时V定负,零解渐近稳定,而f0时V定正,零解不稳定52. 甲、乙、丙、丁四人争夺乒乓球单打冠军,已知情况如下: 前提:(a)若甲获冠军,则乙或丙获亚军; (b)若乙获亚军,甲、乙、丙、丁四人争夺乒乓球单打冠军,已知情况如下:前提:(a)若甲获冠军,则乙或丙获亚军;(b)若乙获亚军,则甲不能获冠军;(c)若丁获亚军,则丙不能获亚军;事实是:(d)甲获冠军;结论是:(e)丁没有获亚军。请证明此结论是有效结论。证明如果令 P:甲获冠军; Q:乙获亚军; R:丙获亚军; S:丁获亚军。 由题意可知,需证明 P(QR),QP,SR, 用间接证明法: S P(附加前提) SR P R T, P P P(QR) P QR T, (QR)(RQ) T QR T QP P Q T, (11)R T, (12)RR(矛盾) T,(11) 53. 已知一容器的外表面由y=x2(0y12m)绕y轴旋转而成,现在该容器盛满了水,将容器内的水全部抽出至少需作多少功已知一容器的外表面由y=x2(0y12m)绕y轴旋转而成,现在该容器盛满了水,将容器内的水全部抽出至少需作多少功?以y为积分变量,则y的变化范围为0,12,相应于0,12上的任一小区间y,y+dy的一薄层水近似看作高为dy、底面积为x2=y的一个圆柱体,得到该部分体积为ydy,水的密度P=1000kg/m3,该部分重力为1000gydy,把该部分水抽出的移动距离为12-y,因此作功为 . 54. 设y1,y2是二阶非齐次线性微分方程的两个不同的特解,证明: (1)y1与y2之比不可能是常数; (2)对任何一个常数设y1,y2是二阶非齐次线性微分方程的两个不同的特解,证明:(1)y1与y2之比不可能是常数;(2)对任何一个常数,y=y1+(1-)y2是方程的解(1)如果y1=ky2,则由题意,常数k0,1从而有 y1+P(x)y1+Q(x)y1=f(x) 以及 y1+P(x)y1+Q(x)y1=(ky2)+P(x)(ky2)+Q(x)(ky2)=kf(x) 于是就有kf(x)=f(x),但f(x)0,此式不可能成立,所以y1与y2之比不可能是常数 (2)将y=y1+(1-)y2代入方程的左端,得到 y1+(1-)y2+P(x)y1+(1-)y2+Q(x)y1+(1-)y2 =y1+P(x)y1+Q(x)y1+(1-)y2+p(x)y2+Q(x)y2 =f(x)+(1-)f(x)=f(x) 因此,对一切常数,y=y1+(1-)y2也是线性微分方程的解 55. (如图所示)设A,B,C是不共线的3点,它们决定一平面,则点P在上的充要条件是存在唯一的数组(,),)使得(如图所示)设A,B,C是不共线的3点,它们决定一平面,则点P在上的充要条件是存在唯一的数组(,),)使得其中O是任意的一点,P在ABC内的充要条件是*与0,0,0同时成立。 若点,则与,共面,或 取1-l-k=,=k,则 ,+=1 *部分证明:在ABC内成立,且 ,0l1,且0k+l1即0,r0,0,0,+r=1,且在ABC内 56. 甲、乙两车床生产同一种零件现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm)为: 甲:15.0,1甲、乙两车床生产同一种零件现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm)为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05)?57. 某厂生产某种产品的生产函数z20x210x2y25y,其中x和y为两种投入量,z为产出量若两种投入量的某厂生产某种产品的生产函数z20x210x2y25y,其中x和y为两种投入量,z为产出量若两种投入量的价格分别为2和1,产品的售价为5,试求最大利润正确答案:收入函数R(x,y)5z1005x250x10y225y,总成本函数C(x,y)2xy,从而利润函数为L(x,y)R(x,y)C(x,y)1005x248x10y224y,Lxx10,Lxy0,Lyy20所以A10,B0,C20,B2AC2000,有极值而A0,故有极大值,而点(48,12)为唯一驻点,从而点(48,12)为最大值点所以Lmax(48,12)100548248481012224121001152230414428835921296229658. 计算:(1)div(ugradv);(2)divr,其中r=xi+yj+zk计算:(1)div(ugradv);(2)divr,其中r=xi+yj+zk(1)div(ugradv)=(uv)=uv+u(v)=gradugradv+uv (2)r=(x,y,z),divr=(x,y,z)=3 59. 设随机变量服从参数为2的指数分布,试证=1-e-2在区间(0,1)上服从均匀分布设随机变量服从参数为2的指数分布,试证=1-e-2在区间(0,1)上服从均匀分布因为服从参数为2的指数分布,则概率密度函数为 分布函数 在x0时,y=1-e-2x的反函数是,有 故服从均匀分布 60. 求矩阵A特征值的QR迭代时,具体收敛到哪种矩阵是由A的哪种性质决定的?求矩阵A特征值的QR迭代时,具体收敛到哪种矩阵是由A的哪种性质决定的?设ARnn,且A有完备的特征向量组如果A的等模特征值中只有实重特征值或多重复的共轭特征值,则由QR算法产生的Ak本质收敛于分块上三角矩阵(对角块为一阶和二阶子块)且对角块中每一个22子块给出A的一对共轭复特征值,每一个一阶对角子块给出A的实特征值,即 其中m+2l=n,BI(i=1,2,l)为22子块,它给出A的一对共轭特征值
展开阅读全文