资源描述
福建师范大学21秋近世代数平时作业一参考答案1. 如果一个n(n1)阶行列式中元素均为+1或-1,则行列式的值是否一定为偶数?如果一个n(n1)阶行列式中元素均为+1或-1,则行列式的值是否一定为偶数?正确答案:一定。根据行列式的性质若将该行列式的任意一行加到另外一行对应元素上去得到的行列式中一定有一行元素全为偶数(零也是偶数)则该行元素可提出公因子2剩下的行列式元素都是整数其值也是整数乘以2后必定是偶数故行列式的值一定为偶数。一定。根据行列式的性质,若将该行列式的任意一行加到另外一行对应元素上去,得到的行列式中一定有一行元素全为偶数(零也是偶数),则该行元素可提出公因子2,剩下的行列式元素都是整数,其值也是整数,乘以2后必定是偶数,故行列式的值一定为偶数。2. 求微分方程y&39;&39;+y=2sin3x的通解。求微分方程y+y=2sin3x的通解。(1)先求对应齐次方程的通解。 由于对应齐次方程的特征方程r2+1=0的特征根为r1,2=i,则对应齐次方程y+y=0的通解为Y=C1cosx+C2sinx (2)再求该方程的一个特解。 因为自由项f(x)=2sin3x为Pm(x)exsinx型函数,为求该方程的一个特解,先求方程y+y=2e3ix的一个特解。 由于i=3i不是特征根。故其特解可设为y*=ae3ix。把它代入方程y+y=2e3ix并消去e3ix,得,即y+y=2e3ix的一个特解为 取其虚部就得到题设方程的一个特解为。因此题设方程的通解为 3. 对于二次三次的整系数多项式判断是否可约首选哪种方法?A、Eisenstein判别法B、函数法C、求有理根对于二次三次的整系数多项式判断是否可约首选哪种方法?A、Eisenstein判别法B、函数法C、求有理根法D、反证法正确答案: C4. 在区间0,1上任取两点P,Q,求它们之间距离Z=|PQ|的概率密度fZ(z),以及概率PZ1/6在区间0,1上任取两点P,Q,求它们之间距离Z=|PQ|的概率密度fZ(z),以及概率PZ1/6当0z1时,fZ(z)=2(1-z)PZ1/6=11/36经常将相遇问题作为几何概率的例题用二维随机变量的函数是另一种选择,题2中的概率就是一个相遇问题的解5. 已知f(x)的一个原函数是sinxlnx,求已知f(x)的一个原函数是sinxlnx,求答案:f(x)=(sinxlnx)=cosxlnx+sinx/x原式=(,1)xdf(x) =xf(x)(,1)-(,1)f(x)xdx=x(cosxlnx+sinx/x)(,1)-sinxlnx(,1)=-ln-sin16. 在一个班级的50名学生中,有21名在高等数学考试中取得了优秀成绩,有26名学生在线性代数考试中取得了优秀成绩在一个班级的50名学生中,有21名在高等数学考试中取得了优秀成绩,有26名学生在线性代数考试中取得了优秀成绩,假如有17名学生在此两科考试中都没有取得优秀成绩,问有多少名学生在两科考试中都取得了优秀成绩?并试用文氏图画出结果设在高等数学考试中取得优秀成绩的学生为集合A,在线性代数考试中取得优秀成绩的学生为集合B,根据题意,有 |AB|=50-17=33 根据容斥原理 |AB|=|A|+|B|-|AB| |AB|=|A|+|B|-|AB|=21+26-33=14 故在两科考试中都取得优秀成绩的学生人数为14人,文氏图如下: 7. 设f(x)和g(x)为二随机变量的概率密度,则( )为某随机变量的概率密 度 (a) f(x)g(x) (b) (c) 3f(x)+2g设f(x)和g(x)为二随机变量的概率密度,则()为某随机变量的概率密 度(a) f(x)g(x)(b)(c) 3f(x)+2g(x)(d) 2f(x)+g(x)-2B8. 设矩阵Amn经初等行变换变成了矩阵Bmn,证明:A的由第j1,j2,jr列组成的向量组与.B的由第j1,j2,jr列组成设矩阵Amn经初等行变换变成了矩阵Bmn,证明:A的由第j1,j2,jr列组成的向量组与.B的由第j1,j2,jr列组成的向量组有相同的线性相关性.证 由A与B行等价知存在可逆方阵P,使得PA=B.设A,B按列分块分别为 A=1 2n,B=1 2n 则PA=B可写成 P1 P2Pn=1 2n 即Pj=j (j=1,2,n) (3-37) 设有一组数x1,x2,xr,使得 (3-38) 用矩阵P左乘上式两端,并利用(3-37)式,得 (3-39) 反过来,若有x1,x2,xr使(3-39)式成立,用P-1左乘(3-39)式两端,并利用P-1j=j,便得(3-38)式成立.故关于x1,x2,xr的两个齐次线性方程组(3-38)与(3-39)是同解的,当它们只有零解时,向量组和向量组都线性无关;当它们存在非零解时,向量组和向量组都线性相关,且如果有常数k1,ki-1,ki+1,kr,使,则对应地有.所以向量组与向量组有相同的线性相关性.本题证明了:矩阵的初等行变换不改变矩阵列向量之间的线性相关性.由此可知,若A与B行等价,则为B的列向量组的极大无关组为A的列向量组的极大无关组. 9. 已知下列非齐次线性方程组()、(): () ()已知下列非齐次线性方程组()、():()()对方程组()的增广矩阵施行初等行变换: 由r(A)=r()=34知,方程组()有无穷多解,且原方程组()等价于方程组 (*) 令x4=1,代入方程组(*)对应的齐次方程组中,求得基础解系为=(1,1,2,1)T. 求特解:令x4=0,得 x1=-2,x2=-4,x3=-5. 故所求通解为 x=k(1,1,2,1)T+(-2,-4, 5,0)T$由1的结论可知,方程组()的通解为 x1=-2+k,x2=-4+k,x3=-5+2k,x4=k, 分别将上述解代入方程组(),得 整理可得 由于方程组()的通解中的k可取任意常数,故 m-2=0, n-4=0, t=6, 即 m=2, n=4, t=6 10. 某橡胶厂采用两种配方生产橡胶,现测得两种配方生产的橡胶伸长率如下: 方案甲 540 533某橡胶厂采用两种配方生产橡胶,现测得两种配方生产的橡胶伸长率如下:方案甲540533525520545532529541534方案乙565577580575556542560532570561设两总体都服从正态分布,均值和方差均未知,问两种配方伸长率的方差有无显著差异(=0.1)?有显著差异11. 设扩大的欧氏平面P2(R)上两点A(3,-1,2),B(2,0,1),求: (1)直线AB在齐次坐标中的普通方程与参数方程; (设扩大的欧氏平面P2(R)上两点A(3,-1,2),B(2,0,1),求:(1)直线AB在齐次坐标中的普通方程与参数方程;(2) 直线AB上的无穷远点的齐次坐标和它所对应的参数值。(1)由,求出直线AB的普通方程为 参数方程为 (,是不全为0的实数) 因为无穷远点的齐次坐标为(x1,x2,0),所以从普通方程中解出x1=1,x2=1,即无穷远点的齐次坐标为(1,1,0),此时,相应的参数值由参数方程解得=-1,=2。 12. 设f(x)和(x)在(-,+)内有定义,f(x)为连续函数,且f(x)0,(x)有间断点,则_ (A)f(x)必有间断点设f(x)和(x)在(-,+)内有定义,f(x)为连续函数,且f(x)0,(x)有间断点,则_(A)f(x)必有间断点(B)(x)2必有间断点(C)f(x)必有间断点(D)必有间断点D解法1 反证法若没有间断点,即在(-,+)内连续,又因为f(x)连续,则由连续函数的运算法则知:f(x)=(x)也在(-,+)内连续这与题设(x)有间断点矛盾,故必有间断点 解法2 排除法令,f(x)=x2,(x),f(x)符合题设但 f(x)=1在(-,+)内没有间断点,即(A)不正确; (x)2=1在(-,+)内没有间断点,即(B)不正确; f(x)=(x)2=1在(-,+)内没有间断点,即(C)不正确 故应选(D) 13. 用分支定界法求解 min(4x1+4x2)用分支定界法求解min(4x1+4x2)用线性规划不难求得最优解为: x1=x2-0 14. 函数y=Ax2+B在区间(-,0)内单调增加,则A,B应满足( ) AA0,B任意 BA0,B0 CA0,B任意 DA0,B=0函数y=Ax2+B在区间(-,0)内单调增加,则A,B应满足()AA0,B任意BA0,B0CA0,B任意DA0,B=0C15. f&39;(x0)=0,f&39;&39;(x0)0是函数f(x)在点x=x0处有极值的( )。 A必要条件 B充分条件 C充要条件f(x0)=0,f(x0)0是函数f(x)在点x=x0处有极值的()。A必要条件B充分条件C充要条件D无关条件B16. 0n|sinx|dx (n是自然数)0n|sinx|dx(n是自然数)0n|sinx|dx k=0n-1k(k+1)|sinx|dx 令 x=k+t 则 k(k-1)|sinx|dx=0(k+t)sinxtdt =(2k+1) 原式=k=0n-1(2k+1)=n2 解2 令x=n-t,则 0n|sinx|dx=0n(n-t)|sint|dt =n0n|sint|dt-0nt|sint|dt 从而有 17. 设某商品的需求函数为Q=f(Q)=12-求:设某商品的需求函数为Q=f(Q)=12-求:$(16)=$E(6)0.6718. 设(X1,X2,Xn)是取自正态总体N(,1)的一个样本,其中未知,-+试求k+C的双侧1-置信区间,其中k,C是常设(X1,X2,Xn)是取自正态总体N(,1)的一个样本,其中未知,-+试求k+C的双侧1-置信区间,其中k,C是常数,k0由于已知,选用样本函数的分布19. 求下列微分方程边值问题的格林函数:求下列微分方程边值问题的格林函数:先求边值问题y=0,y(0)=1,y(1)=2的解方程有基解组y1=1,y2=x通解为y=c1+c2x代入边值条件有解y=1+2x设边值问题y=f(x),y(0)=0,y(1)=0的格林函数为 由齐次方程边值条件得a1(t)=0,b2(t)=0 利用结果,有 解得b1(t)=-t,a2(t)=-1 即格林函数为 解为最后,原非齐次边值问题的解为 $齐次方程的两个线性无关解为,y2=1,令其格林函数为 利用p0(x)=x2有 由边值条件y(1)=y(1)得b1(t)+b2(t)=-b1(t)又由当x0时y(x)有界条件知,应取a1(t)=0 于是有b1(t)=-1,b2(t)=1+,格林函数为 $齐次方程是欧拉方程,可令y=xK,代入得K(K-1)+2K=K(K+1)=0,有通解y=c1+c2x-1用常数变易法,令y=c1(x)+c2(x)x-1,则y=c1+c2x-1-c2x-2,设c1+c2x-1=0,于是y=-c2x-2,y=-c2x-2+2c2x-3将其代入方程得 x2y+2xy=-c2+2c2x-1-2c2x-1=-c2=f(x), 而由c1+c2x-1=0又有c1=-c2x-1=x-1f(x),最后得非齐次方程的特解其通解为利用边值条件有c2=-c1=于是有可定义格林函数 边值问题的解为 ,(1x3) 20. 证明空间P1(5,3,-2),P2(4,1,-1)与P3(2,-3,1)三点共线证明空间P1(5,3,-2),P2(4,1,-1)与P3(2,-3,1)三点共线由于向量因此向量平行,即P3位于过P1,P2的直线上,也就是P1,P2,P3三点共线21. 若一元函数(x)在a,b上连续,令 f(x,y)=(x),(x,y)D=a,b(-,+) 试讨论f在D上是否连续?是否一致连若一元函数(x)在a,b上连续,令f(x,y)=(x),(x,y)D=a,b(-,+)试讨论f在D上是否连续?是否一致连续?f(x,y)在D上连续且一致连续 因为(x)在闭区间a,b上连续,所以(x)在a,b上一致连续因而对,当x1,x2a,b,|x1-x2|时,有 |(x1)-(x2)| 由于f(x,y)=(x)与y无关,所以对,当|x1-x2|,|y1-y2|(或(P1,P2)时,就有 |f(x1,y1)-f(x2,y2)|=|(x1)-(x2)| 故f(x,y)在D上一致连续 22. 简述统计指标的分类。简述统计指标的分类。正确答案:统计指标可以按其研究的目的从不同角度进行分类:按指标反映的时间特点不同分为时点指标和时期指标;按指标计量单位的不同分为实物指标和价值指标;按指标反映总体特征的不同分为数量指标和质量指标。统计指标可以按其研究的目的从不同角度进行分类:按指标反映的时间特点不同,分为时点指标和时期指标;按指标计量单位的不同,分为实物指标和价值指标;按指标反映总体特征的不同,分为数量指标和质量指标。23. 已知向量组1(1,2,1,1),2(2,0,t,0),3(0,4,5,2)的秩为2,则t_已知向量组1(1,2,1,1),2(2,0,t,0),3(0,4,5,2)的秩为2,则t_正确答案:应填3分析向量组的秩小于向量的个数时,可用行列式为0或初等行变换来讨论详解1由于r(1,2,3)2,则矩阵的任一个三阶子阵的行列式的值为零,即解得t3详解2r(1,2,3)2t25,即t3评注反求参数,一般均可联想到某行列式为零,但初等行变换对于具体的向量组始终是一个有力的工具24. 设A,B为集合,证明:(AB)(A-B)=A(方法不限)设A,B为集合,证明:(AB)(A-B)=A(方法不限)可用多种方法证明本题 方法1 直接证明法(用集合演算证明) (AB)(A-B) =(AB)(AB) (补交转换律) =A(BB) (分配律) =AE (E为全集、排中律) =A (同一律) 方法2 直接证明法(用定义证明) x(AB)(A-B) (分配律) (排中律) (同一律) 所以,(AB)(A-B)=A 方法3 使用归谬法(反证法) 否则,(AB)(A-B)A,则,使得 记为“情况1” 或者,使得 记为“情况2” 在情况1下: 这是个矛盾式 在情况2下: 这也是个矛盾式 综上两种情况可知:(AB)(A-B)=A。 25. 在曲线y=x3上哪一点的切线平行于直线y-12x-1=0?哪一点的法线平行于直线y+12x-1=0?在曲线y=x3上哪一点的切线平行于直线y-12x-1=0?哪一点的法线平行于直线y+12x-1=0?y=3x2曲线y=x3上点(x,y)处切线斜率k=3x2; 曲线y=x3上点(x,y)处法线斜率 直线y-12x-1=0的斜率k1=12 今3x2=12x2=4x=2 在曲线y=x3上点(-2,-8)和点(2,8)处的切线平行于 直线y-12x-1=0 直线y+12x-1=0的斜率k2=-12 令 在曲线y=x3上点和点处的法线平行于 直线y+12x-1=0 26. 设随机变量X满足E(X)=3,D(X)=5,求E(X+2)2设随机变量X满足E(X)=3,D(X)=5,求E(X+2)2E(X+2)2=E(X2+4X+4)=E(X2)+4E(X)+4 =D(X)+E2(X)+4E(X)+4=30 27. 求直线l1:与直线l2:的公垂线方程求直线l1:与直线l2:的公垂线方程根据题意知公垂线的方向向量可取 , l1与公垂线所确定平面1的法向量为 , 点(9,-2,0)在平面1上,故1的方程为 -16(x-9)-27(y+2)-17(z-0)=0, 即 16x+27y+17z-90=0. 同理,l2与公垂线所确定平面H2的法向量为 , 点(0,-7,7)在平面2上,故2的方程为 58(x-0)+6(y+7)+31(z-7)=0, 即 58x+6y+31z-175=0. 1与2的交线即为l1与l2的公垂线,故公垂线方程为 28. (1)在一棵有两个2次结点、四个3次结点、其余为树叶的无向树中,应该有几片树叶? (2)画出两棵不同构的满足条件(1)在一棵有两个2次结点、四个3次结点、其余为树叶的无向树中,应该有几片树叶?(2)画出两棵不同构的满足条件(1)的结点次数的无向树T1,T229. 若函数|f(x)|在点x=x0处可导,则f(x)在点x=x0处必可导;若函数|f(x)|在点x=x0处可导,则f(x)在点x=x0处必可导;错误例如,可 见|f(x)|在点x=0处可导,而f(x)在点x=0处不可导 30. 求与直线x9y1=0垂直的曲线y=x33x25的切线方程求与直线x+9y-1=0垂直的曲线y=x3-3x2+5的切线方程因为曲线y=x3-3x2+5上任一点处切线的斜率为 y=3x2-6x 而直线x+9y-1=0的斜率为-1/9依题意有 3x2-6x=9 解之得x1=-1,x2=3故可求得切点 对应于该两切点的切线斜率为 k1=y|x=-1=9及k2=y|x=3=9故两切线方程为 y-1=9(x+1) 及y-5=9(x-3) y-9x-1=0及y-9x+22=0 31. 求一个等边三角形的边置换群和顶点置换群。求一个等边三角形的边置换群和顶点置换群。如图8.3所示,将等边三角形的边与顶点分别标记。则三角形分别有绕中心旋转0,120,240的三个对称0,1,2,以及每个顶点与对边中心连线为轴的翻转对称:1与c中点连线的翻转1;2与a中点连线的翻转2;3与b中点连线的翻转3,关于顶点的置换为 关于顶点置换群Gc=0,1,2,1,2,3,关于边的置换为 关于边置换群为 32. 写了n封信,但是信封上的地址是以随机的次序写的,设Y表示地址恰好写对的信的数目,试求E(Y)及D(Y)。写了n封信,但是信封上的地址是以随机的次序写的,设Y表示地址恰好写对的信的数目,试求E(Y)及D(Y)。正确答案:33. 设一球面过点M(1,2,3)且与各坐标面相切,求此球面方程设一球面过点M(1,2,3)且与各坐标面相切,求此球面方程正确答案:因为点M(123)在第一卦限所以球面一定在第一卦限rn 设球面方程(因为与坐标面相切)为:(xa)2(ya)2(za)2a2a0rn 又由于点M(123)在球面上故满足球面方程:(1a)2(2a)2(3a)2a2rn因为点M(1,2,3)在第一卦限,所以球面一定在第一卦限设球面方程(因为与坐标面相切)为:(xa)2(ya)2(za)2a2,a0又由于点M(1,2,3)在球面上,故满足球面方程:(1a)2(2a)2(3a)2a234. 试对九章算术思想方法的一个特点算法化的内容加以说明。试对九章算术思想方法的一个特点算法化的内容加以说明。参考答案九章算术在每一章内都先列举若干实际问题,并对每个问题给出答案,然后再给出术,作为一类问题的共同解法;以后遇到同类问题,只要按术给出的程序去做就一定能求出问题的答案;书中的术其实就是算法。35. (溶液混合问题)一容器内盛有50 L的盐水溶液,其中含有10 g的盐现将每升含2 g盐的溶液以每分钟5 L(溶液混合问题)一容器内盛有50 L的盐水溶液,其中含有10 g的盐现将每升含2 g盐的溶液以每分钟5 L的速率注入容器,并不断进行搅拌,使混合液迅速达到均匀,同时混合液以每分钟3 L的速率流出容器问在任意时刻t容器中的含盐量是多少?正确答案:36. 已知P(A)=a,P(B)=n,P(AB)=c,求:(1);(2);(3);(4)已知P(A)=a,P(B)=n,P(AB)=c,求:(1);(2);(3);(4)(1) (2) (3) (4) 37. 设ARnn,则存在有限个Givens矩阵(或Householder矩阵)的乘积Q,使得QAQT为上Hessenberg矩阵设ARnn,则存在有限个Givens矩阵(或Householder矩阵)的乘积Q,使得QAQT为上Hessenberg矩阵仅讨论使用Givens矩阵的情形 第1步:设A=(aij)nn,记(0)=(a21,an1)TRn-1,当(0)=0时转入 第2步;(0)0时,构造有限个Givens矩阵的乘积T0,使得 T0/(0)=|(0)|e1 (e1Rn-1) 记,则有 = 第2步:A(1)R(n-1)(n-1),记Rn-2,当(1)=0时转入第3步;(1)0时,构造有限个Givens矩阵的乘积T1,使得 T1/(1)=|(1)|e1 (e1Rn-2) 记,则有 第3步:A(2)R(n-2)(n-2), 第n-2步:,记 当(n-3)=0时结束;(n-3)0时,构造Givens矩阵Tn-3,使得 Tn-3(n-3)=|(n-3)|e1 (e1R2) 记,则有 最后,构造正交矩阵 可使QAQT为上Hessenberg矩阵 证毕 38. 问向量=(2,3,一1)T是否为向量组1=(1,一1,2)T;2=(一1,2,一3)T;3=(2,一3,5)T的线性组合?如果是问向量=(2,3,一1)T是否为向量组1=(1,一1,2)T;2=(一1,2,一3)T;3=(2,一3,5)T的线性组合?如果是,求其组合系数正确答案:设1x1+2x2+3x3=rn即:故不能用克莱姆法则rn所以x1=7一c;x2=5+c;x3=c为任意常数故=1(7一c)+2(5+c)+3crn c为任意常数设1x1+2x2+3x3=,即:故不能用克莱姆法则所以x1=7一c;x2=5+c;x3=c为任意常数故=1(7一c)+2(5+c)+3c,c为任意常数39. 对事件A,B,说明下列关系式相互等价: (1); (2) (3)A+B=B; (4)AB=A; (5)对事件A,B,说明下列关系式相互等价:(1);(2)(3)A+B=B;(4)AB=A;(5)用文氏图表示事件A,B的关系即可看出(1)、(3)、(4)、(5)是相互等价的,即 又有 于是可得(2)与(1)、(3)、(4)、(5)也是相互等价的。 40. 设f (x) 和g (x) 都在x=a处取得极大值,F (x)=f (x)g (x),则F(x)在x=a处( )。A、必须取得极大值B、设f (x) 和g (x) 都在x=a处取得极大值,F (x)=f (x)g (x),则F(x)在x=a处( )。A、必须取得极大值B、必须取得极小值C、不取极值D、不能确定正确答案: D41. 证明:同余类的乘法是Zn的一个代数运算证明:同余类的乘法是Zn的一个代数运算正确答案:设(ijst均为整数)则rn n|i-sn|j-trn于是n整除rn i(j一t)+(is)t=ij一strn从而rnrn即同余类的乘法是Zn的一个代数运算设(i,j,s,t均为整数),则n|i-s,n|j-t于是n整除i(j一t)+(is)t=ij一st从而即同余类的乘法是Zn的一个代数运算42. 方程y-4y&39;+5y=e2x(cosx+3sinx)的特解形式为y&39;=_;方程y-4y+5y=e2x(cosx+3sinx)的特解形式为y=_;xe2x(Ccosx+Dsinx)43. 与对合矩阵相似的矩阵仍是对合矩阵与对合矩阵相似的矩阵仍是对合矩阵正确答案:设A为对合矩阵即A2=IB与A相似则存在可逆矩阵P使得B=P-1AP由课本命题1可得B2=P-1A2P=P-1IP=I即B2=I故B仍然是对合矩阵设A为对合矩阵,即A2=I,B与A相似,则存在可逆矩阵P使得B=P-1AP由课本命题1可得B2=P-1A2P=P-1IP=I,即B2=I故B仍然是对合矩阵44. 函数y=x2+4x-5在区间(-6+6)内满足( ) A先单调下降再单调上升 B单调下降 C先单调上升再单调下降 D函数y=x2+4x-5在区间(-6+6)内满足()A先单调下降再单调上升B单调下降C先单调上升再单调下降D单调上升A45. 设an,bn二收敛级数中至少有一个为绝对收敛,又设cn=a0bn+a1bn-1+anb0,则cn必收敛,且 墨吞斯设an,bn二收敛级数中至少有一个为绝对收敛,又设cn=a0bn+a1bn-1+anb0,则cn必收敛,且墨吞斯可假定bn为绝对收敛于是根据假设便有 置n=|b0|+|b1|+|bn|,n=c0+c1+cn则 n=(a0+a1+a2+an)(b0+b1+b2+bn)-b1an- b2(an+an-1)-b3(an+an-1+an-2)-bn(an+an-1+a1)=snsn-b1(sn-sn1)-b2(sn-sn-2)-bn(sn-s0) 故 现在的情况很明白,由于 故对于任意给定的0,总可选取n,m以及n-m都充分地大,使得 |n-ss|snsn-ss|+(m-0)-A,此处A=max|sn-sn-j|(m+1jn)又|snsn-ss|亦可使之小于所设由于为任意而A及m均系有界,故得|n-ss|0 46. 求微分方程y+2y&39;-3y=2ex-1的通解求微分方程y+2y-3y=2ex-1的通解47. 设f(xy,xy)=x2xy,试求f(x,y)设f(x+y,x-y)=x2-xy,试求f(x,y)48. 某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量N(100,1.22),现测量9支灌装样品的灌装量(单位:g)某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量N(100,1.22),现测量9支灌装样品的灌装量(单位:g)为:99.3,98.7,100.5,101.2,98.3,99.7,102.1,100.5,99.5问在显著性水平=0.05下,已知2=1.44 因为N(100,1.44),n=9 提出假设H0:=0=100 找统计量 求临界值对给定的=0.05,查正态分布表得,满足P(|U|u/2)=0.05的临界值为u/2=1.96 求观察值由,计算得 作出判断因为|U|=0.51.96,所以接受H0,即认为灌装量符合标准$已知期望=100,因为N(100,1.44),n=9 提出假设H0: 找统计量 求临界值对给定的=0.05,查2分布表,求出临界值 求观察值计算,得出 作出判断由于2.710.1719,因此接受H0,即认为灌装精度在标准范围内 49. 最大似然估计的统计思想是什么?最大似然估计的统计思想是什么?50. 线性方程组都可用克莱姆规则求解。( )线性方程组都可用克莱姆规则求解。()参考答案:错误错误51. 二次积分02dyy4-yf(x,y)dx改变成先y后x的积分是_。二次积分02dyy4-yf(x,y)dx改变成先y后x的积分是_。02dx02f(x,y)dy+24dx04-xf(x,y)dy52. 试证明: 设是非空开集,r00若对任意的xG,作闭球,则是开集试证明:设是非空开集,r00若对任意的xG,作闭球,则是开集证明 设x0A,则存在xG,使得.注意到G是开集,故存在0,使得再取xB(x,)且xx以及|x-x0|r0,从而有.由此易知,存在00,使得,即A是开集53. 设D=0,10,1,证明函数 在D上部可积。设D=0,10,1,证明函数在D上部可积。对D作任意的分割T:1,2,n,则f(x,y)关于分割的上和与下和分别为 其中, 所以 故f(x,y)在D上不可积。 54. 9某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,试求他拨号不超过三次就能接通电话的9某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,试求他拨号不超过三次就能接通电话的概率是多少?若记得最后一位是奇数,则此概率又是多少?此人必定在十次之内接通此号码,将此十次看做是10个箱子,编号为1,2,10把正确的号码看做一个球,此球置于第n号箱子中,表示此人拨n次才能接通电话,球的放置方法共10种以4表示“不超过三次就能接通电话”这一事件,则A的有利场合就是将球置入前三个箱子中,共有三种,故P(A) =3/10=0.3 若记得最后一位是奇数,则多只需拨五次就能接通电话。故样本点总数为5,P(A) =3/5=0.6 55. 设随机变量X服从正态分布N(,2),令U=_,可使U服从N(0,1)的正态分布。设随机变量X服从正态分布N(,2),令U=_,可使U服从N(0,1)的正态分布。56. 求一组满足式(见上题)的不全为零的复系数多项式f(x),g(x)和h(x)求一组满足式(见上题)的不全为零的复系数多项式f(x),g(x)和h(x)msg:,data:,voicepath:57. 某厂生产一种熔丝,规定熔丝熔化时间的方差不能超过400今从一批产品中抽取25个,测得其熔化时间的方差为388.某厂生产一种熔丝,规定熔丝熔化时间的方差不能超过400今从一批产品中抽取25个,测得其熔化时间的方差为388.58设熔化时间服从正态分布,根据所给数据,检查这批产品的方差是否符合要求(=0.05)设熔丝熔化时间为X,则XN(u,2),依题意有n=25,s2=388.58 待检假设H0:202=400,H1:202=400 检验统计量,得拒绝域为 22(n-1)=0.052(24)=36.415. 由于22(n-1),故接受H0,即这批产品的方差符合要求 58. 从装有3只红球,2只白球的口袋中任意取出2只球,则事件“取到2只白球”的逆事件是( ) A取到2只红球 B取到从装有3只红球,2只白球的口袋中任意取出2只球,则事件“取到2只白球”的逆事件是()A取到2只红球B取到的白球数大于2C没有取到白球D至少取到1只红球D因为逆事件等同于否事件,而取到2只白球的否为至少取到1只红球59. 若f(x,y)的偏导数存在,则f&39;x(x0,y0)=0,f&39;y(x0,y0)=0是f(x,y)在(x0,y0)取得极值的( ) A充分条件若f(x,y)的偏导数存在,则fx(x0,y0)=0,fy(x0,y0)=0是f(x,y)在(x0,y0)取得极值的()A充分条件B必要条件C充要条件D无关条件B60. 一个口袋装有许多红色(r)、白色(w)、蓝色(b)的乒乓球,其中任取4个,则观察到的颜色种类的样本空间一个口袋装有许多红色(r)、白色(w)、蓝色(b)的乒乓球,其中任取4个,则观察到的颜色种类的样本空间为_。参考答案r,w,b,rw,rb,wb,rwb
展开阅读全文