2021-2022年五年级数学竞赛《乘法原理》专题辅导培训资料导学讲义

上传人:xt****7 文档编号:89875115 上传时间:2022-05-13 格式:DOC 页数:5 大小:55.50KB
返回 下载 相关 举报
2021-2022年五年级数学竞赛《乘法原理》专题辅导培训资料导学讲义_第1页
第1页 / 共5页
2021-2022年五年级数学竞赛《乘法原理》专题辅导培训资料导学讲义_第2页
第2页 / 共5页
2021-2022年五年级数学竞赛《乘法原理》专题辅导培训资料导学讲义_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2021-2022年五年级数学竞赛乘法原理专题辅导培训资料导学讲义 上一讲我们学习了用“加法原理”计数,这一讲我们学习“乘法原理”。什么是乘法原理呢?我们来看这样一个问题: 从甲地到乙地有3条不同的道路,从乙地到丙地有4条不同的道路。从甲地经过乙地到丙地,共有多少种走法? 我们这样思考:从甲地到乙地的3条道路中任意选一条都可以从甲地到乙地,再从乙地大丙地的4条道路中任意选一条都可以从乙地到丙地,那么,从甲地到乙地的3条道地第一条到达乙地后,可以走从乙地到丙地的任意一条路,这样就有了4种不同的走法。从甲地到乙地的第二条、第三条路到达乙地后,仍可以从乙地到丙地的4条路中任选一条到丙地,如图所示: 从图中可以看出,从甲地到丙地共有3 X 4 =12(种)走法。 如果完成一件事情需要几个步,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,那么,完成这件工作共有N = m1 x m2 x m3 x x mn 种不同的方法。这就是乘法原理。例1 书架上有4本故事书,7本科普书,志远从书架上任取一本故事书和一本科普书,共有多少种不同的取法?例2 从2、3、5、7、11这五个数字中每次取出2个数字,分别作为一个分数的分子和分母,一共可以组从多少个分数?其中有多少个真分数?例3 用9、8、7、6这四个数可以组成多少个没有重复数字的三位数?这些位数的和是多少?例4 如图,A、B 、C、D四个区域分别用红、黄、蓝、白四种颜色中的某一种染色。若要求相邻的区域染不同的颜色,问:共有多少种不同的染色方法?ABCD例5 如图,小明家到学校有3条东西向的马路和5条南北向 的马路。他每天步行从家到学校(只能向东或向南走),最多有多少种不同的走法?小明家 学校 练习与思考(每题10分,共100分。)1.从甲地到乙地有两条河,从乙地到丙地有3条路可走,从甲地经乙地到丙地共有 种走法。2.书架的上、中、下层各有3本、5本、4本故事书。若要从每层书架上任取一个本书,共有 种不同的取法。3.有1,2,3,三数字,一共可以组成 个没有重复数字的三位数。4.两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛 场。5.从5,7,11,13这四个数中每次取2个数组成分数,一共可以组成 个分数,其中真分数有 个。6.图中一共有 个不同的长方形。7.一个口袋里装有5个小球,另7一个口袋里装有4个小球。这些小球的颜色互不相同。(1) 从两个口袋里任意取一个小球,有 种不同的取法。(2)从两个口袋内各取一个小球,有 种不同的取法。8.某信号兵用红、黄、蓝三面棋从上到下挂在旗杆上的三个位置表示信号。每次可挂一面、二面或三面,并且不同的顺序、不同的位置表示不同的信号。一共可以表示 种不同的信号。9.图中从A点到B点共有 种走法(要求走最短的线路)。 AB 10.用0到9这十个数字可以组成 个没有重复数字的三位数。附送:2021-2022年五年级数学竞赛加法原理专题辅导培训资料导学讲义 在日常生活与实践中,我们经常会遇到分组、计数的问题。解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。 什么叫做加法原理呢?我们先来看这样一个问题: 从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法? 我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。 我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和。即N = m1 + m2 + + mn (N代表完成一件工作的方法的总和,m1,m2, mn 表示每一类完成工作的方法的种数)。这个规律就乘做加法原理。例1 书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法?例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?例3在4 x 4的方格图中(如下图),共有多少个正方形? 例4 妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?练习与思考(每题10分,共100分。)1. 从甲城到乙城,可乘汽车,火车或飞机。已知一天中汽车有2班,火车有4班,甲城到乙城共有( )种不同的走法。2. 一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准备_种不同的车票。3.下面图形中共有_个正方形。 4. 图中共有_个角。5. 书架上共有种不同的的故事书,中层本不同的科技书,下层有钟不同的历史书。如果从书架上任取一本书,有_种不同的取法。6. 平面上有个点(其中没有任何三个点在一条直线上),经过每两个点画一条直线,共可以画_条直线。7. 图中共有_个三角形。 8. 图中共有_个正方形9. 从2,3,5,7,11,13,这六个数中,每次取出两个数分别作为一个分数的分子和分母,一共可以组成_个真分数10. 某铁路局从站到站共有个火车站(包括站和站)铁路局要为在站到F站之间运行的火车准备_种不同的车票,其中票价不相同的火车票有_种。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 方案规范


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!