资源描述
课时训练(三十三) 概率|夯实基础|1.2018包头样题二 下列事件中是必然事件的是()A.-a是负数B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.图形平移前后的对应线段相等2.2018昆区二模 下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中至少有2人同月同日出生”为必然事件3.2018南充 下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天降水的概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.2018昆区二模 从2,0,13,6这五个数中随机抽取一个数,抽到有理数的概率是()图33-4A.15B.25C.35D.455.2018金华 如图33-4,一个游戏转盘中,红,黄,蓝三个扇形的圆心角度数分别为60,90,210.让转盘自由转动,停止后指针落在黄色区域的概率是()图33-5A.16B.14C.13D.7126.2017东营 如图33-5,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.47B.37C.27D.177.2018包头样题一 从甲村到乙村有2种不同的路径,再从乙村到丙村又有3种不同的路径,因此从甲村经乙村到丙村,选择其中一种走法其可能性为()A.13B.14C.15D.168.2018临沂 2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.13B.14C.16D.199.2018威海 一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1,卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上的数字之积为负数的概率是()A.14B.13C.12D.3410.2018湖州 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()图33-6A.19B.16C.13D.2311.2018青山区二模 如图33-6是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.18B.16C.14D.1212.如图33-7是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是()图33-7A.12B.13C.14D.1513.2017东河区二模 在一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应在该盒子中再添加红球()A.2个B.3个C.4个D.5个14.2018内江 有五张卡片(形状,大小,质地都相同),正面分别画有下列图形:线段;正三角形;平行四边形;等腰梯形;圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是.15.2018滨州 若从-1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.16.2018绵阳 现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是.17.2018包头一模 有甲、乙两个不透明的盒子,甲盒内放了三张分别标记数字2,3,4的卡片,乙盒内放了两张分别标记数字1,2的卡片.若小宇从甲、乙两盒中各随机抽出一张卡片,其数字之和大于4的概率是.18.2018成都 在一个不透明的盒子中,装有除颜色外其他完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是.19.2017昆区二模 一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为23,则n=.20.2017昆区一模 在一个不透明的口袋中有3个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在15%左右,则口袋中的白球大约有个.21.2016青山区二模 在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张,再把两张卡片上的整式分别作为分子、分母,则能组成分式的概率为.22.2016重庆A卷 从数-2,-12,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n.若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.23.2017包头 有三张正面分别标有数字-3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;(2)求两次抽取的卡片上的数字之和为非负数的概率.24.2017东河区二模 如图33-8,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(当指针指在边界线上时,重转一次,直到指针都指向某个区域为止).(1)请你用画树状图或列表的方法求出|m+n|1的概率;(2)直接写出点(m,n)落在函数y=-1x的图象上的概率.图33-825.2018安徽 “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数,最高分为99分)进行整理,并分别绘制成扇形统计图和频数分布直方图,部分信息如图33-9.图33-9(1)本次比赛参赛选手共有人,扇形统计图中“69.579.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名的选手是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.26.2018达州 为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民,扇形统计图中,B项对应的扇形圆心角的度数是度,补全条形统计图;(2)若甲、乙两人上班时从A,B,C,D四种交通工具中随机选择一种,请用列表或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.图33-10|拓展提升|27.2017青山区一模 2016年3月,我市某中学举行了“爱我中国朗诵比赛”活动,根据学生的成绩划分为A,B,C,D四个等级,并绘制了不完整的两幅统计图.根据图33-11中提供的信息,回答下列问题:图33-11(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形的圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树状图法,求获A等级的小明参加市朗诵比赛的概率.参考答案1.D2.D3.A4.C5.B6.A解析 要从7个空白小正方形中选1个涂阴影,共有7种等可能结果,其中符合要求的是最下面的一行中的每一个,即有4种符合要求的结果,所以能构成这个正方体的表面展开图的概率是47,故选A.7.D8.D解析 画树状图如下.一共有9种等可能的结果,而小华和小强都抽到物理学科的情况只有一种,所以P(小华和小强都抽到物理学科)=19,故选D.9.B10.C11.C12.B13.B14.2515.1316.31017.1218.619.120.1721.2322.1623.解析 通过列表或画树状图把两次抽取的所有情况列举出来,找出符合条件的情况求出概率.解:(1)列表: 第二次第一次 -313-3(-3,-3)(-3,1)(-3,3)1(1,-3)(1,1)(1,3)3(3,-3)(3,1)(3,3)或画树状图:总共有9种等可能的结果,其中,两次抽取的卡片上的数字之积为负数的结果有4种,P(两次抽取的卡片上的数字之积为负数)=49.(2)两次抽取的卡片上的数字之和为非负数的结果有6种,P(两次抽取的卡片上的数字之和为非负数)=69=23.24.解:(1)列表如下:乙甲-1012-1(-1,-1)(-1,0)(-1,1)(-1,2)-12(-12,-1)(-12,0)(-12,1)(-12,2)1(1,-1)(1,0)(1,1)(1,2)由表格可知,所有等可能的结果有12种,其中|m+n|1的情况有5种,所以|m+n|1的概率P1=512.(2)点(m,n)落在函数y=-1x的图象上的概率P2=312=14.25.解:(1)5030%(2)不能.理由如下:由频数分布直方图可得“89.599.5”这一组人数为12人,1250100%=24%,则“79.589.5”和“89.599.5”两组人数的和占参赛选手的60%,而7879.5,所以他不能获奖.(3)将2名男生和2名女生分别编号为男1,男2,女1,女2,则由题意得树状图如下:由树状图知,共有12种等可能的结果,其中恰好选中1男1女的结果共有8种,故恰好选中1男1女的概率为812=23.26.解:(1)200054补全条形统计图如图:(2)列表如下: 乙甲ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)或画树状图如下:从上面的表格(或树状图)可以看出,所有可能的结果共有16种,且每种结果出现的可能性相同,其中甲、乙两人恰好选择同一种交通工具上班的情况有4种,即(A,A),(B,B),(C,C),(D,D),P(甲、乙两人恰好选择同一种交通工具上班)=416=14.27.解:(1)参加朗诵比赛的学生共有1230%=40(人).故所填答案为40.B等级学生的人数是40-4-16-12=8(人).补充条形统计图如下.(2)m=440100=10,n=1640100=40.C等级对应扇形的圆心角为36040%=144.故答案为10,40,144.(3)设获A等级的小明用A表示,其他三位同学用a,b,c表示,画树状图如下:共12种等可能的情况,其中小明参加的情况有6种,则P(小明参加市朗诵比赛)=612=12.13
展开阅读全文