资源描述
考点强化练10一次函数及其应用夯实基础1.(2018江苏常州)一个正比例函数的图象经过点(2,-1),则它的表达式为()A.y=-2xB.y=2xC.y=-12xD.y=12x答案C2.(2017湖南怀化)一次函数y=-2x+m的图象经过点P(-2,3),且与x轴、y轴分别交于点A,B,则AOB的面积是()A.12B.14C.4D.8答案B3.(2018湖北荆州)已知:将直线y=x-1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小答案C解析根据题意,将直线y=x-1向上平移2个单位后得到的直线解析式为:y=x-1+2,即y=x+1.当x=0时,y=1,与y轴交于点(0,1);当y=0时,x=-1,与x轴交于点(-1,0);图象经过第一、二、三象限;y随x的增大而增大.故选B.4.(2018辽宁葫芦岛)如图,直线y=kx+b(k0)经过点A(-2,4),则不等式kx+b4的解集为()A.x-2B.x4D.x4时,x-2.故选A.5.(2017黑龙江哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min答案D6.(2018海南)如图,在平面直角坐标系中,点M是直线y=-x上的动点,过点M作MNx轴,交直线y=x于点N,当MN8时,设点M的横坐标为m,则m的取值范围为.答案-4m4解析点M的横坐标为m,所以点M的纵坐标为-m,点N的纵坐标为m,因此MN=|-m-m|=|-2m|,MN8,所以|-2m|8,因此-4m4.7.(2018浙江杭州)某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前进前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象,乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.答案60v80解析由图象得v甲=1203=40(km/h),考虑极点情况,若在10点追上,则v甲(10-8)=v乙(10-9),解得:v乙=80km/h,同理:若在11点追上,v乙=60km/h.故60v乙80.8.(2018重庆B卷)如图,在平面直角坐标系中,直线l1:y=12x与直线l2的交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为-2,直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求BDC的面积.解(1)在y=12x中,当x=2时,y=1;易知直线l3的解析式为y=12x-4,当y=-2时,x=4,故A(2,1),C(4,-2).设直线l2的解析式为y=kx+b,k0,则2k+b=1,4k+b=-2,解得k=-32,b=4,故直线l2的解析式为y=-32x+4.(2)易知D(0,4),B(0,-4),从而DB=8.由C(4,-2),知C点到y轴的距离为4,故SBDC=12BD|xC|=1284=16.导学号16734108提升能力9.(2017黑龙江齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间的函数关系的图象是()答案D解析由题意得y=10-2x,x0,10-2x0,x+x10-2x,x+10-2xx,52x5.符合要求的图象是D.10.(2018江苏扬州)如图,在等腰RtABO中,A=90,点B的坐标为(0,2),若直线l:y=mx+m(m0)把ABO分成面积相等的两部分,则m的值为.答案5-132解析如图,y=mx+m=m(x+1),函数y=mx+m一定过点(-1,0),当x=0时,y=m,点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,y=-x+2,y=mx+m,得x=2-mm+1,y=3mm+1.直线l:y=mx+m(m0)把ABO分成面积相等的两部分,(2-m)2-mm+12=21212,解得:m=5-132或m=5+132(因m2,故舍去后者),故答案为5-132.11.(2018浙江义乌)实验室里有一个水平放置的长方体容器,从内部量得它的高是15 cm,底面的长是30 cm,宽是20 cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别为10 cm,10 cm,y cm(y15),当铁块的顶部高出水面2 cm时,x,y满足的关系式是.答案y=120-15x2(6x8)或y=6x-1060x656解析当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8-x)cm(x8),铁块浸在水中的体积为108y=80y(cm3),80y=3020(8-x),y=120-15x2.y15,x6,即:y=120-15x2(6x8),当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同的方法得,y=6x+1060x656,故答案为:y=120-15x2(6x8)或y=6x-1060x656.12.(2018吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲跑步中途改为步行,到达图书馆恰好用30 min.小东骑自行车以300 m/min的速度直接回家.两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示.(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.解(1)4000100(2)小东从图书馆到家的时间x=4000300=403(h),D403,0.设CD的解析式为y=kx+b(k0),图象经过C(0,4000),D403,0两点,403k+b=0,b=4000,解得k=-300,b=4000,y=-300x+4000.小东离家的路程y与x的解析式为y=-300x+40000x403.(3)设OA的解析式为y=mx(m0),图象过点A(10,2000),10m=2000,解得m=200,OA的解析式为y=200x(0x10).y=-300x+4000,y=200x,解得x=8,y=1600.答:两人出发8分钟后相遇.创新拓展13.(2016黑龙江大庆)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0x60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.解(1)设y1=kx+b,把(0,1200)和(60,0)代入y1=kx+b,得b=1200,60k+b=0.解得k=-20,b=1200.所以y1=-20x+1200.当x=20时,y1=-2020+1200=800,即当x=20时的水库总蓄水量为800万m3.(2)设y2=kx+b,把(20,0)和(60,1000)代入y2=kx+b中,得20k+b=0,60k+b=1000.解得k=25,b=-500.所以y2=25x-500.当0x20时,y=-20x+1200;当20x60时,y=y1+y2=-20x+1200+25x-500=5x+700.若y900,则5x+700900,x40.当y1=900时,900=-20x+1200,x=15.故发生严重干旱时x的范围为15x40.导学号167341097
展开阅读全文