计量经济学(庞浩第二版)四五章部分复习题答案,亲手奉献

上传人:痛*** 文档编号:85537659 上传时间:2022-05-05 格式:DOC 页数:34 大小:940KB
返回 下载 相关 举报
计量经济学(庞浩第二版)四五章部分复习题答案,亲手奉献_第1页
第1页 / 共34页
计量经济学(庞浩第二版)四五章部分复习题答案,亲手奉献_第2页
第2页 / 共34页
计量经济学(庞浩第二版)四五章部分复习题答案,亲手奉献_第3页
第3页 / 共34页
点击查看更多>>
资源描述
word第四章 多重共线性习题五解答1在回归模型中,如果解释变量之间存在某种相关性,而不是满足经典假定中的互不相关,如此称这种现象为多重共线性。判断模型是否存在多重共线性的方法有1在方程线性显著性检验中F检验值显著,但针对个别解释变量参数估计量检验中全部或局部t-检验值不显著;2参数估计量的符号不符合经济意义。按照这两种方法判定此题中的模型:F=189.9,线性显著,计算t-值,t1=-0.531/0.34=-1.562,t2=0.91/0.14=6.5,t3=0.047/0.021=2.238,显然t1不显著,可判定可能存在多重共线性,从参数估计量符号来看可得到同样的结论。2模型1是由C-D生产函数取对数得到,只不过是生产投入中,除了资本K、劳动L之外,还包含了时间T而已,取对数是对模型线性化处理,更好估计。模型1中的解释变量的系数在经济学中的解释为弹性。意思是其他条件不变的情况下,K、L、T变化百分之一,Y变化百分之几。由经济学理论知,一般情况下,资本投入的增加,必然引起产值的增加在资本多得还不至于影响生产的条件下。因此LogK的先验符号为正,显然与模型结果与预期的不一样,两种解释:1模型存在多重共线性,2资本投入所产生的效应已经达到最大,再继续增加投入影响了生产,导致产值下滑。不过这种解释没有现实依据,现实生活中有钱投入多的影响生产吗?没有,除非钱多得让生产员工没心思工作,只关心钱的问题了。就我们所知的现实经济中,大多数的经济体,都存在资本投入不足的问题,而没有出现资本投入过多的问题有位经济学家做过实证研究。3理由很简单,模型假定该国制造业生产规模报酬不变,如此就有,为产值Y对资本K的弹性,LogK的系数,为产值Y对劳动的弹性,LogL的系数。如果存在,如此模型1显然是不适宜的,因为存在完全多重共线性。而为了消除多重共线性,就有了模型2。因此模型2的估计是在模型1存在多重共线性条件下进展的。4现实经济中,大多数经济行为都会随着时间呈现出一定的趋势,而这种趋势解释变量却不能加以解释,因此模型中常参加时间趋势变量以便处理此类型的问题,模型1和2即为此意。习题六解答1对理论模型进展回归得到如下方程软件回归结果见附录图1:结果分析:方程整体解释能力较好,消费支出的96%能得到解释,为调整的解释能力,防止模型因解释变量的增多而虚假的提高解释能力。F值显著,业反映出方程通过显著性检验。但是从t检验值看,却发现参数估计量都不能通过检验。说明模型存在多重共线性。2模型显然不可靠,一般地说,一个家庭的可支配收入和家庭财富具有正相关性当然也存在例外,一个吃老本的没有多少收入的败家子就是例外,因此模型把可支配收入和财富都加进来肯定不行,从回归结果可得到同样的结论。做收入和财富的相关性检验,得到两者相关系数居然高到0.9986,可以肯定模型不可靠。为可以试着改良模型,只做支出对可支配收入的回归模型。得到回归方程输出结果见附附录图2:习题七解答1估计模型得到如下方程输出结果见附录图3:结果分析:整体解释能力较好,达到89%,方程线性显著,但各t检验值都小于2,不显著。模型存在多重共线性。2模型估计得到如下方程输出结果见附录图4:根据,得到,。3对Z可以理解为某种意义上的总收入,它是由全部的工资收入、75%的非工资、非农业收入和62.5%的农业收入之和构成。就是说,在对收入构成的分类中,存在某种程度的重复,亦即它们之间存在某种程度的相关性,不能把所有的非工资、非农业收入和所有的农业收入参加模型。但须注意,工资收入与非工资、非农业收入与农业收入之间不存在因果关系。习题八解答1估计模型得到如下方程输出结果见附录图5:结果分析:解释能力较好,达到89.3%,F检验显著F临界值3.97,但t检验值通不过检验。可能存在多重共线性。2先做解释变量的相关系数得到表1:表1相关系数correlationx2x3x4x5x6x2x311x4x5x6111可以看到,变量之间高度相关,X2与X5之间相关系数达到0.97。因此模型存在多重共线性。当然还有其他检验方法,如辅助回归,即自变量之间做回归,检验其显著性判别是否存在多重共线性;还有可以计算VIF或TOL来判断。在此不一一列出。但需提醒一个问题,解释变量之间简单相关系大小不是判别多重共线性的充要条件。就是说,如果存在存在多重共线性,解释变量之间不一定存在很高的简单相关系数,反之如此成立。因此简单相关系数判别多重共线性不能当做教条!用相关系数检验多重共线性时,还需要考虑偏相关系数,这样才能准确的判别。3此题使用逐步回归法进展修正。首先做Y对每一个解释变量的个别回归输出结果见附录图6-图10,选取回归效果最好的一个方程。经比照,选取Y对X2的回归方程如下:其次,在上述模型下分别参加其它解释变量回归输出结果见附录图11-图14,选取效果最好的方程,经比照,选取Y对X2、X3的回归,方程如下:可以看到,解释能力显著提高,而且F检验和t检验都显著常数项除外,无实际意义。再次,在上述模型下,继续照搬上述方法,进展回归输出结果见附录图15-图17,选取效果最好的。经分析,没有得到较好回归结果,逐步回归法停止。因此最终模型为Y对X2、X3的回归模型。不过为了模型得到跟好结果,采取无截距项的回归输出见附录图18,回归方程如下:结果分析:比照有截距项和无截距项的回归,发现解释能力为发生显著的下降,因此无截距项回归,在方方程F检验和t检验全部显著的条件下获得了较好的效果。多重共线性的修正方法还有岭回归,数据结合等。最后说明:对于多重共线性的修正不能盲目进展,要考虑经济意义,多重共线性是一种样本现象,多数情况下的多重共线性,只要增大样本都会取得较好的效果,但不可奢求消除多重共线性,只能说可以减小其程度,使模型在误差项容许的X围下达到最好。第五章 异方差性习题五解答1估计回归模型得到如下方程输出结果见附录图19:t值 2.569 32结果分析:模型拟合较好,解释能力达到94.6%,显著性均通过。2检验异方差性的方法有多种,以下采取图示法,怀特检验。首先图示法检验得到:图1 Y与X散点图图2 误差项平方和R与X的散点图从图1可以看出,Y与X得散点图似乎看不出异方差性,但从残差项与X的散点图可以看出存在异方差。其次再用怀特检验得到:图3 white 检验输出结果Heteroskedasticity Test: WhiteF-statisticObs*R-squaredScaled explained SSProb. F(2,57)Prob. Chi-Square(2)Prob. Chi-Square(2)Test EquationDependent Variable: RESID2Method: Least SquaresDate: 12/21/09 Time: 00:41Sample: 1 60Included observations: 60VariableCXX2CoefficientStd. Errort-StatisticProb. R-squaredAdjusted R-squaredS.E. of regressionSum squared residLog likelihoodF-statisticProb(F-statistic) Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat从表中的前四行可以看出,模型存在异方差,Obs*R-squared值为10.86,大于临界值。3对异方差性修正有多种方法,此题采取WLS,对数变换法两种方法。首先采用WLS法,取W=1/resid,得到如下方程输出结果见附录图20:比照加权和为加权的两个回归结果,发现,结果大有改良,DW统计量都显著改善!接下来对数变换法进展修正,最后把钟方法的输出结果做比照。对数变换得到如下方程输出结果见附录图21:结果分析:我们看到,对数变换并没有显著改善模型,解释能力提高不到1%。因此对数变换不适合此题的修正,我们最好采用WLS修正。当然这只是此题的结论。由凯恩斯消费理论知,消费和收入之间大致成线性关系。习题六解答(1) 首先做散点图分析数据之间的关系,得到如下图:图4 Y与X、Z散点图我们看到,Y与利润Z、Y与销量X之间大致呈线性关系,但是,Y对销量X的回归明显存在异方差,这符合此题的出题目的。因此我们建立线性回归模型:,估计得到如下方程输出结果见附录图22:结果分析:拟合效果不太好,解释能力才47.8%,不到50%,虽然显著性检验通过。在截面数据的回归中,异方差性一直是个萦绕心头的问题。此题抽取的不同部门的销售量和R&D费用的数据,因为不同局部用于R&D费用的比列不同,所以在销量中,R&D费用占有的比列就存在差异。2为了说明如何运用Glerjser方法检验异方差,下面以此题为例说明。其根本思想是用残差项的绝对值对解释变量的不同形式做回归,判断回归方程的显著性,以此来界定原回归模型是否存在异方差。依次做如下模型的回归估计输出结果见附录图23-图27:,。经估计得到,对解释变量平方根的回归最为显著,系数通过检验。必须说明,Glerjser检验只有在大样本情况下才会得到较好的拟合效果,在小样本情况下,如此只能作为了解异方差性某种信息的一种手段。3采用WLS和对数变换法进展修正。WLS修正,W=1/X,得到如下方程输出结果见附录图28:比照原回归结果,解释能力有显著改善。在用对数变换法做修正,得到如下方程输出结果见附录图29:可以看出,在此题的修正中,对数变换方法比加权得到得到了更好的效果。这就说明,不同的数据模型,其适应的修正方法也不同。习题七解答(1) 首先做散点图分析,通过图示粗略地分析Y与X得关系,散点图如下: 图5 Y与X的散点图 图6 LOG(Y)与LOG(X)散点图从散点图分析我们发现,股票价格Y与X之间,线性关系相当微弱,其对数化后的线性关系也不见得好转,但这也只是粗略地分析而已,具体的需要回归估计。分别估计以下两模型:得到如下两方程输出结果见附录图30-图31:结果分析:由估计可以看出,Y对X的线性回归显著,但拟合效果不太好,对数化后的模型估计效果更次,不能通过检验。对残差进展分析:画出残差对解释变量的散点图,试着分析两者关系:图7 残差项与X得散点图从散点图看不出残差与X得关系,因为存在异常点干扰整体关系。2重做回归得到如下方程输出结果见附录图32:结果分析:结果非常令人意想不到!剔除点后,居然模型回归由显著变为不显著!,可以说原模型是个伪回归。也即说明,Y与X之间的线性关系微弱,或者说消费者价格变化率会影响股票价格,但是影响股票价格的主要因素不是消费者价格变化率,而是其他因素。所以,此题找的两个数据没有实质意义,无非是锻炼我们掌握异方差性的相关内容。但是这样的工作可能会影响同学们的现实思考能力,以为回归模型可以利用在任何场合,也就是说方法能论!实事求是才是解决问题的前提和出发点。习题八解答1先验分析,12个样本,有五个解释变量,如把所有解释变量都纳入进来估计结果肯定不显著,存在多重共线性,为了更合理的分析,先做产值Y对所有解释变量的回归,得到如下方程输出结果见附录图33:结果分析:模型整体拟合效果较好,F检验显著,但是大局部t值却不显著,这是多重共线性的典型现象,为此运用逐步回归法得到如下较好的方程简要输出结果见附录,步骤省略:比照上述两方程,我们看到逐步回归法得到的方程,所有系数都显著,解释能力相比于原方程并没有显著下降。这可以作为最终建立的模型,下面的分析将基于上述模型进展。2运用Glejser检验和white检验分析异方差,得到如下结果图8、图9:图8 Glejser检验结果Heteroskedasticity Test: GlejserF-statisticProb. F(3,8)Obs*R-squaredProb. Chi-Square(3)Scaled explained SSProb. Chi-Square(3)Test Equation:Dependent Variable: ARESIDMethod: Least SquaresDate: 12/21/09 Time: 15:41Sample: 1 12Included observations: 12VariableCoefficientStd. Errort-StatisticProb.CX3X4X5R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图9 white检验结果Heteroskedasticity Test: WhiteF-statisticProb. F(6,5)Obs*R-squaredProb. Chi-Square(6)Scaled explained SSProb. Chi-Square(6)Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 12/21/09 Time: 15:47Sample: 1 12Included observations: 12VariableCoefficientStd. Errort-StatisticProb.CX32X3*X4X3*X5X42X4*X5X52R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)结果分析,两种检验,在0.05的显著性水平下95%置信水平,均不能拒绝无异方差性的假设。因此逐步回归法得到的模型在0.05的显著性水平下不能拒绝无异方差性的假设。3如果把显著性水平降低到0.1,如此white检验将得到异方差性的结果。这时如果要修正模型,可采用WLS法。下面以WLS作简要修正,W=1/resid,resid为Y对X3、X4、X5回归得到的残差。修正得到如下结果输出结果见附录图34:结果分析:虽然加权之后回归拟合效果提高了3%,但是,必须看到,这里做的修正是在降低显著性水平条件下进展的,即只是一个练习操作而已,没有实质意义。在实际研究中,当原模型可以很好的拟合数据时,我们再继续对它做些画蛇添足的行为时愚蠢的。附录图1Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 20:25Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb.CX2X3R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodF-statisticDurbin-Watson statProb(F-statistic)图2 Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 20:40Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb.CX2R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodF-statisticDurbin-Watson statProb(F-statistic)图3Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 21:39Sample: 1 14Included observations: 14VariableCoefficientStd. Errort-StatisticProb.CX2X3X4R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图4Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 21:52Sample: 1 14Included observations: 14VariableCoefficientStd. Errort-StatisticProb.CZR-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图5Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 22:28Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X3X4X5X6R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid6540962.Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图6Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:12Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid13369621Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图7Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:13Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX3R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid1.03E+08Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图8Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:13Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX4R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid89040158Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图9Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:13Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX5R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid24282463Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图10Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:14Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX6R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid41526060Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图11Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:23Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X3R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid7014837.Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图12Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:24Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X4R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid10057321Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图13Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:24Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X5R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid11733403Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图14Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:24Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X6R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid9833673.Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图15Dependent Variable: YMethod: Least SquaresDate:12/20/09 Time: 23:32Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X3X4R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid6903970.Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图16Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:34Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X3X5R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid6589653.Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图17Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:34Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.CX2X3X6R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid6955813.Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图18Dependent Variable: YMethod: Least SquaresDate: 12/21/09 Time: 17:42Sample: 1983 1995Included observations: 13VariableCoefficientStd. Errort-StatisticProb.X2X3R-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared resid8207158.Schwarz criterionLog likelihoodHannan-Quinn criter.Durbin-Watson stat图19Dependent Variable: YMethod: Least SquaresDate: 12/20/09 Time: 23:59Sample: 1 60Included observations: 60VariableCoefficientStd. Errort-StatisticProb.CXR-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)图20Dependent Variable: YMethod: Least SquaresDate: 12/21/09 Time: 10:26Sample: 1 60Included observations: 60Weighting series: 1/RESIDVariableCoefficientStd. Errort-StatisticProb.CXWeighted StatisticsR-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)Unweighted StatisticsR-squaredMean dependent varAdjusted R-squaredS.D. dependent varS.E. of regressionSum squared resid
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!