2018中考数学试题分类汇编 考点10 一元二次方程(含解析)

上传人:Sc****h 文档编号:81449012 上传时间:2022-04-27 格式:DOC 页数:22 大小:258.50KB
返回 下载 相关 举报
2018中考数学试题分类汇编 考点10 一元二次方程(含解析)_第1页
第1页 / 共22页
2018中考数学试题分类汇编 考点10 一元二次方程(含解析)_第2页
第2页 / 共22页
2018中考数学试题分类汇编 考点10 一元二次方程(含解析)_第3页
第3页 / 共22页
点击查看更多>>
资源描述
2018中考数学试题分类汇编:考点10 一元二次方程一选择题(共18小题)1(2018泰州)已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20Dx10,x20【分析】A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1x2=2,结论C错误;D、由x1x2=2,可得出x1、x2异号,结论D错误综上即可得出结论【解答】解:A=(a)241(2)=a2+80,x1x2,结论A正确;B、x1、x2是关于x的方程x2ax2=0的两根,x1+x2=a,a的值不确定,B结论不一定正确;C、x1、x2是关于x的方程x2ax2=0的两根,x1x2=2,结论C错误;D、x1x2=2,x1、x2异号,结论D错误故选:A2(2018包头)已知关于x的一元二次方程x2+2x+m2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A6B5C4D3【分析】根据方程的系数结合根的判别式0,即可得出m3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论【解答】解:a=1,b=2,c=m2,关于x的一元二次方程x2+2x+m2=0有实数根=b24ac=224(m2)=124m0,m3m为正整数,且该方程的根都是整数,m=2或32+3=5故选:B3(2018宜宾)一元二次方程x22x=0的两根分别为x1和x2,则x1x2为()A2B1C2D0【分析】根据根与系数的关系可得出x1x2=0,此题得解【解答】解:一元二次方程x22x=0的两根分别为x1和x2,x1x2=0故选:D4(2018绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A9人B10人C11人D12人【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论【解答】解:设参加酒会的人数为x人,根据题意得: x(x1)=55,整理,得:x2x110=0,解得:x1=11,x2=10(不合题意,舍去)答:参加酒会的人数为11人故选:C5(2018临沂)一元二次方程y2y=0配方后可化为()A(y+)2=1B(y)2=1C(y+)2=D(y)2=【分析】根据配方法即可求出答案【解答】解:y2y=0y2y=y2y+=1(y)2=1故选:B6(2018眉山)若,是一元二次方程3x2+2x9=0的两根,则+的值是()ABCD【分析】根据根与系数的关系可得出+=、=3,将其代入+=中即可求出结论【解答】解:、是一元二次方程3x2+2x9=0的两根,+=,=3,+=故选:C7(2018泰安)一元二次方程(x+1)(x3)=2x5根的情况是()A无实数根B有一个正根,一个负根C有两个正根,且都小于3D有两个正根,且有一根大于3【分析】直接整理原方程,进而解方程得出x的值【解答】解:(x+1)(x3)=2x5整理得:x22x3=2x5,则x24x+2=0,(x2)2=2,解得:x1=2+3,x2=2,故有两个正根,且有一根大于3故选:D8(2018宜宾)某市从2017年开始大力发展“竹文化”旅游产业据统计,该市2017年“竹文化”旅游收入约为2亿元预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A2%B4.4%C20%D44%【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=2.2(不合题意,舍去)答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%故选:C9(2018湘潭)若一元二次方程x22x+m=0有两个不相同的实数根,则实数m的取值范围是()Am1Bm1Cm1Dm1【分析】根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围【解答】解:方程x22x+m=0有两个不相同的实数根,=(2)24m0,解得:m1故选:D10(2018盐城)已知一元二次方程x2+k3=0有一个根为1,则k的值为()A2B2C4D4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程13+k=0,然后解一次方程即可【解答】解:把x=1代入方程得1+k3=0,解得k=2故选:B11(2018嘉兴)欧几里得的原本记载,形如x2+ax=b2的方程的图解法是:画RtABC,使ACB=90,BC=,AC=b,再在斜边AB上截取BD=则该方程的一个正根是()AAC的长BAD的长CBC的长DCD的长【分析】表示出AD的长,利用勾股定理求出即可【解答】解:欧几里得的原本记载,形如x2+ax=b2的方程的图解法是:画RtABC,使ACB=90,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B12(2018铜仁市)关于x的一元二次方程x24x+3=0的解为()Ax1=1,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=3【分析】利用因式分解法求出已知方程的解【解答】解:x24x+3=0,分解因式得:(x1)(x3)=0,解得:x1=1,x2=3,故选:C13(2018台湾)若一元二次方程式x28x311=0的两根为a、b,且ab,则a2b之值为何?()A25B19C5D17【分析】先利用因式分解法解方程得到a=11,b=3,然后计算代数式a2b的值【解答】解:(x11)(x+3)=0,x11=0或x3=0,所以x1=11,x2=3,即a=11,b=3,所以a2b=112(3)=11+6=17故选:D14(2018安顺)一个等腰三角形的两条边长分别是方程x27x+10=0的两根,则该等腰三角形的周长是()A12B9C13D12或9【分析】求出方程的解,即可得出三角形的边长,再求出即可【解答】解:x27x+10=0,(x2)(x5)=0,x2=0,x5=0,x1=2,x2=5,等腰三角形的三边是2,2,52+25,不符合三角形三边关系定理,此时不符合题意;等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12故选:A15(2018广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=100【分析】利用增长后的量=增长前的量(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100故选:A16(2018乌鲁木齐)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元则有()A(180+x20)(50)=10890B(x20)(50)=10890Cx(50)5020=10890D(x+180)(50)5020=10890【分析】设房价定为x元,根据利润=房价的净利润入住的房间数可得【解答】解:设房价定为x元,根据题意,得(x20)(50)=10890故选:B17(2018黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A4B5C6D7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x1)场球,第二个球队和其他球队打(x2)场,以此类推可以知道共打(1+2+3+x1)场球,然后根据计划安排15场比赛即可列出方程求解【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=5(不合题意,舍去),则共有6个班级参赛故选:C18(2018眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A8%B9%C10%D11%【分析】设平均每次下调的百分率为x,则两次降价后的价格为6000(1x)2,根据降低率问题的数量关系建立方程求出其解即可【解答】解:设平均每次下调的百分率为x,由题意,得6000(1x)2=4860,解得:x1=0.1,x2=1.9(舍去)答:平均每次下调的百分率为10%故选:C二填空题(共14小题)19(2018扬州)若m是方程2x23x1=0的一个根,则6m29m+2015的值为2018【分析】根据一元二次方程的解的定义即可求出答案【解答】解:由题意可知:2m23m1=0,2m23m=1原式=3(2m23m)+2015=2018故答案为:201820(2018苏州)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=2【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=2,然后利用整体代入的方法进行计算【解答】解:2(n0)是关于x的一元二次方程x2+mx+2n=0的一个根,4+2m+2n=0,n+m=2,故答案为:221(2018荆门)已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为3【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值【解答】解:把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,整理得k2+3k=0,解得k1=0,k2=3,因为k0,所以k的值为3故答案为322(2018资阳)已知关于x的一元二次方程mx2+5x+m22m=0有一个根为0,则m=2【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可【解答】解:关于x的一元二次方程mx2+5x+m22m=0有一个根为0,m22m=0且m0,解得,m=2故答案是:223(2018南充)若2n(n0)是关于x的方程x22mx+2n=0的根,则mn的值为【分析】根据一元二次方程的解的定义,把x=2n代入方程得到x22mx+2n=0,然后把等式两边除以n即可【解答】解:2n(n0)是关于x的方程x22mx+2n=0的根,4n24mn+2n=0,4n4m+2=0,mn=故答案是:24(2018柳州)一元二次方程x29=0的解是x1=3,x2=3【分析】利用直接开平方法解方程得出即可【解答】解:x29=0,x2=9,解得:x1=3,x2=3故答案为:x1=3,x2=325(2018绵阳)已知ab0,且+=0,则=【分析】先整理,再把等式转化成关于的方程,解方程即可【解答】解:由题意得:2b(ba)+a(ba)+3ab=0,整理得:2()2+1=0,解得=,ab0,=,故答案为26(2018十堰)对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=10若(x+1)(x2)=6,则x的值为1【分析】根据题意列出方程,解方程即可【解答】解:由题意得,(x+1)2(x+1)(x2)=6,整理得,3x+3=6,解得,x=1,故答案为:127(2018淮安)一元二次方程x2x=0的根是x1=0,x2=1【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【解答】解:方程变形得:x(x1)=0,可得x=0或x1=0,解得:x1=0,x2=1故答案为:x1=0,x2=128(2018黄冈)一个三角形的两边长分别为3和6,第三边长是方程x210x+21=0的根,则三角形的周长为16【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长【解答】解:解方程x210x+21=0得x1=3、x2=7,3第三边的边长9,第三边的边长为7这个三角形的周长是3+6+7=16故答案为:1629(2018黔南州)三角形的两边长分别为3和6,第三边的长是方程x26x+8=0的解,则此三角形周长是13【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可【解答】解:x26x+8=0,(x2)(x4)=0,x2=0,x4=0,x1=2,x2=4,当x=2时,2+36,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:1330(2018通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场)现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x1)=21【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x1),即可列方程【解答】解:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:x(x1)=21,故答案为: x(x1)=2131(2018南通模拟)某厂一月份生产某机器100台,计划三月份生产160台设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160故答案为:100(1+x)2=16032(2018泰州)已知3xy=3a26a+9,x+y=a2+6a9,若xy,则实数a的值为3【分析】根据题意列出关于x、y的方程组,然后求得x、y的值,结合已知条件xy来求a的取值【解答】解:依题意得:,解得xy,a26a9,整理,得(a3)20,故a3=0,解得a=3故答案是:3三解答题(共11小题)33(2018绍兴)(1)计算:2tan60(2)0+()1(2)解方程:x22x1=0【分析】(1)首先计算特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂,然后再计算加减即可;(2)首先计算,然后再利用求根公式进行计算即可【解答】解:(1)原式=221+3=2;(2)a=1,b=2,c=1,=b24ac=4+4=80,方程有两个不相等的实数根,x=1,则x1=1+,x2=134(2018齐齐哈尔)解方程:2(x3)=3x(x3)【分析】移项后提取公因式x3后利用因式分解法求得一元二次方程的解即可【解答】解:2(x3)=3x(x3),移项得:2(x3)3x(x3)=0,整理得:(x3)(23x)=0,x3=0或23x=0,解得:x1=3或x2=35(2018遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系 销售量y(千克)34.83229.628售价x(元/千克)22.62425.226(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,解得:,y与x之间的函数关系式为y=2x+80当x=23.5时,y=2x+80=33答:当天该水果的销售量为33千克(2)根据题意得:(x20)(2x+80)=150,解得:x1=35,x2=2520x32,x=25答:如果某天销售这种水果获利150元,那么该天水果的售价为25元36(2018德州)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?【分析】(1)根据点的坐标,利用待定系数法即可求出年销售量y与销售单价x的函数关系式;(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x30)万元,销售数量为(10x+1000)台,根据总利润=单台利润销售数量,即可得出关于x的一元二次方程,解之取其小于70的值即可得出结论【解答】解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k0),将(40,600)、(45,550)代入y=kx+b,得:,解得:,年销售量y与销售单价x的函数关系式为y=10x+1000(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x30)万元,销售数量为(10x+1000)台,根据题意得:(x30)(10x+1000)=10000,整理,得:x2130x+4000=0,解得:x1=50,x2=80此设备的销售单价不得高于70万元,x=50答:该设备的销售单价应是50万元/台37(2018沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3、4月每个月生产成本的下降率都相同(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本(1下降率),即可得出结论【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去)答:每个月生产成本的下降率为5%(2)361(15%)=342.95(万元)答:预测4月份该公司的生产成本为342.95万元38(2018重庆)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值【分析】(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50x)个垃圾集中处理点,根据沼气池的个数不低于垃圾集中处理点个数的4倍,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;(2)根据单价=总价数量可求出修建每个沼气池的平均费用,进而可求出修建每个垃圾集中点的平均费用,设y=a%结合总价=单价数量即可得出关于y的一元二次方程,解之即可得出y值,进而可得出a的值【解答】解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50x)个垃圾集中处理点,根据题意得:x4(50x),解得:x40答:按计划,2018年前5个月至少要修建40个沼气池(2)修建每个沼气池的平均费用为7840+(5040)2=1.3(万元),修建每个垃圾处理点的平均费用为1.32=2.6(万元)根据题意得:1.3(1+a%)40(1+5a%)+2.6(1+5a%)10(1+8a%)=78(1+10a%),设y=a%,整理得:50y25y=0,解得:y1=0(不合题意,舍去),y2=0.1,a的值为1039(2018盐城)一商店销售某种商品,平均每天可售出20件,每件盈利40元为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件(1)若降价3元,则平均每天销售数量为26件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出23=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数每件盈利=每天销售这种商品利润列出方程解答即可【解答】解:(1)若降价3元,则平均每天销售数量为20+23=26件故答案为26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元根据题意,得 (40x)(20+2x)=1200,整理,得x230x+200=0,解得:x1=10,x2=20要求每件盈利不少于25元,x2=20应舍去,解得:x=10答:每件商品应降价10元时,该商店每天销售利润为1200元40(2018宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算第一年有40家工厂用乙方案治理,共使Q值降低了12经过三年治理,境内长江水质明显改善(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5求第一年用甲方案治理降低的Q值及a的值【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n的值即可得出关于a的等式求出答案【解答】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=(舍去),第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=1000.3=30,则(30a)+2a=39.5,解得:a=9.5,则Q=20.5设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=1000.3=30,解法一:(30a)+2a=39.5a=9.5x=20.5解法二:解得:41(2018安顺)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励【分析】(1)设该地投入异地安置资金的年平均增长率为x,根据2015年及2017年该地投入异地安置资金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2017年该地有a户享受到优先搬迁租房奖励,根据投入的总资金=前1000户奖励的资金+超出1000户奖励的资金结合该地投入的奖励资金不低于500万元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x1=0.5=50%,x2=2.5(舍去)答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得:81000400+5400(a1000)5000000,解得:a1900答:2017年该地至少有1900户享受到优先搬迁租房奖励42(2018内江)对于三个数a,b,c,用Ma,b,c表示这三个数的中位数,用maxa,b,c表示这三个数中最大数,例如:M2,1,0=1,max2,1,0=0,max2,1,a=解决问题:(1)填空:Msin45,cos60,tan60=,如果max3,53x,2x6=3,则x的取值范围为;(2)如果2M2,x+2,x+4=max2,x+2,x+4,求x的值;(3)如果M9,x2,3x2=max9,x2,3x2,求x的值【分析】(1)根据定义写出sin45,cos60,tan60的值,确定其中位数;根据maxa,b,c表示这三个数中最大数,对于max3,53x,2x6=3,可得不等式组:则,可得结论;(2)根据新定义和已知分情况讨论:2最大时,x+42时,2是中间的数时,x+22x+4,2最小时,x+22,分别解出即可;(3)不妨设y1=9,y2=x2,y3=3x2,画出图象,根据M9,x2,3x2=max9,x2,3x2,可知:三个函数的中间的值与最大值相等,即有两个函数相交时对应的x的值符合条件,结合图象可得结论【解答】解:(1)sin45=,cos60=,tan60=,Msin45,cos60,tan60=,max3,53x,2x6=3,则,x的取值范围为:,故答案为:,;(2)2M2,x+2,x+4=max2,x+2,x+4,分三种情况:当x+42时,即x2,原等式变为:2(x+4)=2,x=3,x+22x+4时,即2x0,原等式变为:22=x+4,x=0,当x+22时,即x0,原等式变为:2(x+2)=x+4,x=0,综上所述,x的值为3或0;(3)不妨设y1=9,y2=x2,y3=3x2,画出图象,如图所示:结合图象,不难得出,在图象中的交点A、B点时,满足条件且M9,x2,3x2=max9,x2,3x2=yA=yB,此时x2=9,解得x=3或343(2018重庆)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1为加快美丽乡村建设,政府决定加大投入经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值【分析】(1)根据道路硬化的里程数至少是道路拓宽的里程数的4倍,列不等式可得结论;(2)先根据道路硬化和道路拓宽的里程数之比为2:1,设未知数为2x千米、x千米,列方程可得各自的里程数,同理可求得每千米的道路硬化和道路拓宽的经费,最后根据题意列方程,并利用换元法解方程可得结论【解答】解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50x)千米,根据题意得:x4(50x),解得:x40答:原计划今年1至5月,道路硬化的里程数至少是40千米(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y千米、2y千米,30y+152y=780,y=13,2y=26,由题意得:13(1+a%)40(1+5a%)+26(1+5a%)10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2m=0,m1=0.1,m2=0(舍),a=1022
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!