基于PLC的煤矿空压机控制系统设计

上传人:痛*** 文档编号:78177554 上传时间:2022-04-21 格式:DOC 页数:42 大小:1.69MB
返回 下载 相关 举报
基于PLC的煤矿空压机控制系统设计_第1页
第1页 / 共42页
基于PLC的煤矿空压机控制系统设计_第2页
第2页 / 共42页
基于PLC的煤矿空压机控制系统设计_第3页
第3页 / 共42页
点击查看更多>>
资源描述
毕业设计(论文) 毕 业 设 计(论 文)基于PLC的煤矿空压机控制系统设计姓 名 系 部 电气工程系 专 业 机电一体化 班 级 08级机电4班 学 号 指导老师 20 11 年 6 月摘 要空气压缩机(简称空压机)是一种用来压缩气体提高气体压力或输送气体的机械。空压机的用途很广,几乎遍及工农业、国防、科技、民用等各个领域。空气压缩机的安全生产保护对于煤矿企业的生产是十分重要的。可编程控制器(PLC)将传统的继电器控制技术、计算机控制技术和通信技术融为一体,专为工业控制而设计。本设计方案采用PLC和变频器实现对空压机组的自动控制。该方案采用变频器实现对空压机“一拖多”的控制,PLC实现变频器的工频与变频的转换控制,以及切换变频器对某台空压机进行控制。系统利用压力传感器采集气包出口压力,通过变送器输出420毫安标准信号至PLC模拟输入端口,经过PLC内部PID算法逻辑运算,送出控制信号至变频器,变频器根据送来的信号改变输出电压的频率,来调节电机转速,以确保供气压力的恒定。当变频器控制当前机由变频转为工频,而供气压力仍不满足时,则由PLC控制变频器软启动下一台空压机变频运行,依次开启。当变频器输出电压的频率已降至下限值,而供气压力仍高于所需压力,则由PLC控制变频器关闭当前机,变频器转而变频控制另一台运行的空压机。从而使生产系统获得良好的经济效益和安全性能。本论文介绍了空气压缩机、可编程控制系统(PLC)控制原理、系统通信等。关键词:空气压缩机;可编程控制器(PLC)控制系统;变频器;PID调节器目 录(小二号黑体) 1绪论41.1 PLC控制在国内外的发展近况41.2课题的背景和意义42 空气压缩机52.1空气压缩机及分类52.2螺杆式空压机62.2.1螺杆式空压机基本结构62.2.2螺杆压缩机的工作原理62.2.3螺杆压缩机的特点72.3活塞式空压机83可编程控制器(PLC)控制系统93.1 PLC的产生和发展93.2 PLC基本结构103.3 PLC基本工作原理113.3.1扫描技术113.3.2 PLC的I/O响应时间123.4 PLC的主要特点124 基于PLC的煤矿空压机控制系统设计方案134.1控制系统组成134.2控制系统的工作原理144.2.1空压机切换工作过程204.2.2通信方式224.2.3控制系统概述234.2.4 报警装置264.3 系统设计274.3.1 PLC控制系统设计步骤27 4.3.2 PLC程序设计的步骤294.4 控制系统硬件设计294.4.1主电路设计294.4.2 PLC选型304.4.3变频器选型324.4.4传感器的选取334.4.5系统PLC硬件部分地址分配及部分程序335 结论365.1工作总结365.2毕业设计心得37 致 谢38参考文献39附录 系统总图40绪论自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。同时,PLC的功能也不断完善。随着计算机技术、信号处理技术、控制技术、网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。今天的PLC不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。 同时,计算机监控系统是采用集中监测、集中控制、集中显示、集中管理、集中保存的系统,融合了较先进的自动化技术、计算机技术、通讯技术、故障诊断技术和软件技术,广泛应用在化工、供暖、机械、供水、水处理等多个领域,在工业生产中发挥越来越显著的作用。1.1 PLC控制在国内外的发展近况20世纪末期,可编程控制器的发展更加适应于现代工业的需要。从控制规模上来说,这个时期发展了大型机和超小型机;从控制功能上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业等领域的应用都得到了长足的发展。我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。最初是在引进设备中大量使用了可编程控制器。接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。目前,我国自己已可以生产中小型可编程控制器。随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。1.2课题的背景和意义空气压缩机是矿山生产重要的四大固定设备之一,它产生压缩空气,用以带动凿岩机、风动装岩机等设备及其他风动工具。其能否安全运行直接影响着煤矿生产的产量和效益。影响其安全生产的因素主要有空压机的超温、超压、断水、断油等。随着煤矿现代化的发展,矿山企业对矿山设备的要求越来越高,建设安全性矿山已成为煤矿生产建设的核心。矿山设备不断更新,不断进步,可靠性、易操作性、可监视性、易维护性等已是最基本的要求了。用继电器组成的控制电路可靠性差、不易维护、不易监视,已不能适应当前的要求。现在迫切需要可靠性高、易维护、易操作、可监视并且价格不高的控制器来代替继电器组成的电路。随着电子技术、软件技术、控制技术的飞速发展,可编程控制器(PLC)发展迅猛,性能很高,价格较为合理,与继电器组的控制电路比具有非常大的优势。许多矿山设备已选用了PLC来代替比较重要的控制设备。传统的保护设备主要采用分离仪表,其可靠性差、集程度低、费用高,不能有效的满足矿山设备投入的经济性和安全性的要求。空压机控制系统中PLC的引入极大地简化了空压机系统的操作,节省了人力并且提高了系统的安全性和稳定性。基于PLC和变频器的空压机控制系统使工作人员可以在计算机集控下完成各项工作,大大减轻了工人的劳动强度,极大地节省了生产中所需的人力资源,也保障了生产和系统的安全。2 空气压缩机2.1空气压缩机及分类 空气压缩机(空压机)是一种利用电动机将气体在压缩腔内进行压缩并使压缩的气体具有一定压力的设备。作为基础工业设备,空压机在冶金、机械制造、矿山、电力、纺织、石化、轻纺等几乎所有的工业行业都有广泛的应用。 空压机分为螺杆式空压机(螺杆式空压机又分为单螺杆式空压机及双螺杆式空压机)、离心式空压机、活塞式空压机、滑片式空压机、涡旋式空压机和旋叶式空压机等(如图2-1所示)空气压缩机螺杆式空压机离心式空压机活塞式空压机滑片式空压机涡旋式空压机旋叶式空压机其它单螺杆式空压机双螺杆式空压机图2-1 空气压缩机分类2.2螺杆式空压机2.2.1螺杆式空压机基本结构在压缩机机体中,平行的配置着一对互相咧合的螺旋形转子通常把节圆外具有凸齿的转子,称为阳转子或阳螺杆。把节圆内具有凹齿的转子,称为阴转子或阴螺杆。一般阳转子与原动机连接,由阳转子带动阴转子转动。转子上的最后一对轴承实现轴向定位,并承受压缩机中的轴向力。转子两端的圆柱滚子轴承使转子实现径向定位,并承受压缩机中的径向力。在压缩机机体的两端,分别开设一定形状和大小的孔口。一个供吸气用,称为进气口;另一个供排气用,称作排气口。2.2.2螺杆压缩机的工作原理螺杆压缩机的工作循环过程可分为进气,压缩和排气三个过程。随着转子旋转,每对相互啮合的齿相继完成相同的工作循环。(1)进气过程:转子转动时,阴阳转子的齿沟空间在转至进气端壁开口时其 空间最大,此时转子齿沟空间与进气口的相通,因在排气时齿沟的气体被完全排出,排气完成时,齿沟处于真空状态,当转至进气口时,外界气体即被吸入,沿轴向进入阴阳转子的齿沟内。当气体充满了整个齿沟时,转子进气侧端面转离机壳进气口,在齿沟的气体即被封闭。(2)压缩过程:阴阳转子在吸气结束时,其阴阳转子齿尖会与机壳封闭,此时气体在齿沟内不再外流。其啮合面逐渐向排气端移动。啮合面与排气口之间的齿沟空间渐渐减小,齿沟内的气体被压缩,压力提高。(3)排气过程:当转子的啮合端面转到与机壳排气口相通时,被压缩的气体开始排出,直至齿尖与齿沟的啮合面移至排气端面,此时阴阳转子的啮合面与机壳排气口的齿沟空间为0,即完成排气过程,于此同时转子的啮合面与机壳进气口之间的齿沟长度又达到最长,进气过程又再进行。从上述工作原理可以看出,螺杆压缩机是一种工作容积作回转运动的容积式气体压缩机械。气体的压缩依靠容积的变化来实现,而容积的变化又是借助压缩机的一对转子在机壳内作回转运动来达到。2.2.3螺杆压缩机的特点就气体压力提高的原理而言,螺杆压缩机与活塞压缩机相同,都属容积式压缩机。就主要部件的运动形式而言,又与离心压缩机相似。所以,螺杆压缩机同时具有上述两类压缩机的特点。(1)螺杆压缩机的优点1)可靠性高:螺杆压缩机零部件少,没有易损件,因而它运转可靠,寿命长,大修间隔期可达48万小时。2)操作维护方便:操作人员不必经过专业培训,可实现无人值守运转。3)动力平衡性好:螺杆压缩机没有不平衡惯性力,机器可平稳地高速工作,可实现无基础运转。4)适应性强:螺杆压缩机具有强制输气的特点,排气量几乎不受排气压力的影响,在宽广范围内能保证较高的效率。5)多相混输:螺杆压缩机的转子齿面实际上留有间隙,因而能耐液体冲击,可压送含液气体,含粉尘气体,易聚合气体等。(2)螺杆压缩机的缺点1)造价高:螺杆压缩机的转子齿面是一空间曲面,需利用特制的刀具,在价格昂贵的专用设备上进行加工。另外,对螺杆压缩机气缸的加工精度也有较高的要求。2)不适合高压场合:由于受到转子刚度和轴承寿命等方面的限制,螺杆压缩机只能适用于中,低压范围,排气压力一般不能超过3.0MPa。3)不能制成微型:螺杆压缩机依靠间隙密封气体,目前一般只有容积流量大于0.2m3/min,螺杆压缩机才具有优越的性能。2.3活塞式空压机活塞式空压机主要由三部分组成:运动机(曲轴、轴承、连杆、十字头、皮带轮或联轴器等)、工作机构(气缸、活塞、气阀等)与机身。此外还有3个辅助系统,即润滑系统、冷却系统及调节系统。活塞式空压机是一种最常见的容积式压缩机。它由曲柄连杆机构将驱动机的旋转运动变为活塞的往复运动。活塞与气缸共同组成压缩机工作腔,依靠活塞在气缸内的往复运动,并借助进、排气阀的自动开闭,使气体周期性的进入工作腔,进行压缩和排出。活塞在气缸内一次往复的全过程分为吸气、压缩和排气三个过程,合称一个工作过程,如图2-2所示。12345133445a单作用式b双作用式1汽缸 2活塞 3进气阀 4排气阀 5活塞杆图2-2 单级活塞式空压机原理简图 一个工作循环周期如下:(1)吸气过程。当活塞2向右边移动时,汽缸左边的容积增大,压力下降,当压力降到稍低于进气管中空气压力时,管内空气便顶开进气阀3进入气缸,并随着活塞的向右移动继续进入气缸,直到活塞移至右边的末端为止。(2)压缩过程。当活塞向左移动时,气缸左边容积开始缩小,空气被压缩,压力随之上升。由于进气阀的止气作用,缸内空气不能倒流回进气管中。同时,因排气管内的空气压力又高于气缸内空气压力,空气无法从排气阀4流出缸外,排气管中的空气也因排气阀的止逆作用而不能流回缸内,所以这时气缸形成一个密闭的容积。当活塞继续向左移动,气缸容积缩小,空气体积也随之缩小,压力不断提高。(3)排气过程。随着活塞不断左移压缩缸内空气,使压力继续升高。当压力稍高于排气管中的压力时,缸内空气便顶开排气阀排入排气管中,并继续排出到活塞移至左边的末端为止。然后,活塞又向右移动,重复上述吸气、压缩和排气工作过程。活塞式的传动机构是曲轴连杆往复运动结构,其主要特点有:流量较小,气流速度低,损失小,效率高; 压力范围广,适用于从低压到超高压;适应性强,排气压力变动较大时,排气量不变;机组零件多用普通金属材料,制造精度要求不太高;外形尺寸及重量较大,结构复杂,易损失件多。活塞式空压机与螺杆式空压机的比较:(1)零部件的数量多,零部件的损坏的机率大,产品的可靠性低。这样必然增加用户的维修费用。(2) 曲轴连杆往复运动结构,由于其往复运动的特性,限制了其转速的提高,致使机器笨重,同时,该运动结构所产生的惯性力能以平衡,剩余的惯性力,会使机器产生振动、噪声以及零部件的不正常的损坏。所以活塞式振动大,机械性噪音大、可靠性低。鉴于以上原因,本系统选用螺杆式空压机。3可编程控制器(plc)控制系统3.1 PLC的产生和发展(1)PLC概念PLC是在继电器控制和计算机技术的基础上开发出来的,并逐渐发展成以微处理器为核心,集计算机技术、自动控制技术及通讯技术于一体的一种新型工业控制装置。(2)PLC发展必然性 传统的继电接触器控制系统(硬件布线)优点:结构简单,因而长期广泛应用。缺点:采用固定的接线方式。一旦生产要求及生产过程发生变化,必须重新设计线路,重新接线安装。不利于产品的更新换代。还有灵活性、通用性差;体积大;速度慢等缺点。60年代末期,美国汽车制造工业相当发达,要求不断更换汽车的型号。传统的继电接触器控制系统被淘汰。1968年,美国最大的汽车制造商GM公司公开招标。研制新的控制系统。提出以下要求:设计周期短,更改容易,接线简单,成本低;把继电器控制和计算机技术结合起来;但编程要比计算机简单易学,操作方便,系统通用性强。1969年,美国数字设备公司研制出世界上第一台PLC,并在GM公司的汽车生产线上首次应用成功。其后,日本、德国相继引入。中国1974年研制,1977年成功。(3)功能发展史:(名字的由来)早期:顺序控制。包括逻辑运算功能。称PLC(Programmable Logic Controller)70年代:微处理器用于PLC。功能增强、数值运算、数据处理、闭环调节等,称PC。3.2 PLC基本结构 PLC主要是由CPU、电源、存储器和专门设计的输入输出接口电路等组成。其基本结构框图如图3-1所示。CPU u存储器电源部分输入单元输出单元编程器或其他设备按钮接触器电磁阀指示灯行程开关继电器触点图 3-1结构简图3.3 PLC基本工作原理PLC的CPU采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点)不会立即动作,必须等扫描到该触点时才会动作。PLC扫描用户程序的时间一般均小于100ms,因此,PLC采用了一种不同于一般微型计算机的运行方式-扫描技术如图3-2所示。3.3.1扫描技术当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。执行OB100启动时间循环监控数据写入输出模块读取输入模块状态执行用户程序执行其它程序图3-2扫描过程(1)输入采样阶段在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应的单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。(2)用户程序执行阶段在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一组梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。即,在用户程序执行过程中,只有输入点在I/O映像区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。 (3)输出刷新阶段当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映像区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。3.3.2 PLC的I/O响应时间为了增强PLC的抗干扰能力,提高其可靠性,PLC的每个开关量输入端都采用光电隔离等技术。为了能实现继电器控制线路的硬逻辑并行控制,PLC采用了不同于一般微型计算机的运行方式(扫描技术)。以上两个主要原因,使得PLC的I/O响应比一般微型计算机构成的工业控制系统慢得多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至更长。所谓I/O响应时间指从PLC的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。3.4 PLC的主要特点(1)高可靠性1) 所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离。2) 各输入端均采用RC滤波器,其滤波时间常数一般为1020ms。3) 各模块均采用屏蔽措施,以防止辐射干扰。4) 采用性能优良的开关电源。5) 对采用的器件进行严格的筛选。6) 良好的自诊断功能,一旦电源或其他软,硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大。7) 大型PLC还可以采用由双CPU构成冗余系统或有三CPU构成表决系统,使可靠性更进一步提高。(2)丰富的I/O接口模块PLC针对不同的工业现场信号,如:交流或直流、开关量或模拟量、电压或电流、脉冲或电位、 强电或弱电等。有相应的I/O模块与工业现场的器件或设备,如:按钮、行程开关、接近开关、传感器及变送器、电磁线圈、控制阀等直接连接。另外为了提高操作性能,它还有多种人-机对话的接口模块; 为了组成工业局部,它还有多种通讯联网的接口模块等等。 (3)采用模块化结构为了适应各种工业控制需要,除了单元式的小型PLC以外,绝大多数PLC均采用模块化结构。PLC的各个部件,包括CPU、电源、I/O等均采用模块化设计,由机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。(4)编程简单易学PLC的编程大多采用类似于继电器控制线路的梯形图形式,对使用者来说,不需要具备计算机的专门知识,因此很容易被一般工程技术人员所理解和掌握。(5)安装简单,维修方便PLC不需要专门的机房,可以在各种工业环境下直接运行。使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。各种模块上均有运行和故障指示装置,便于用户了解运行情况和查找故障。由于采用模块化结构,因此一旦某模块发生故障,用户可以通过更换模块的方法,使系统迅速恢复运行。4 基于plc的煤矿空压机控制系统设计方案4.1控制系统组成控制系统由以下部分组成:变频器、可编程控制器、电抗器、压力变送器、接触器、空气开关、电流表、电压表、按钮、互感器等。基于PLC的控制系统原理图如图4-1所示。空压机空压机空压机M1M2M3压力变送器变频器PLC电源储气与供气管道图4-1控制系统简图PLC由电源、CPU、模拟量输入、输出模块、开关量输入、输出模块等组成。其用来实现电气部分的控制。包括五部分:起动、运行、停止、切换、报警及故障自诊断。起动:三台电机M1,M2,M3如图4-1所示,可以通过转换开关选择变频/工频启动。运行:正常情况,电机M1处于变频调速状态,电动机M2、M3处于停机状态。现场压力变送器检测管网出口压力,并与给定值比较,经PID指令运算,得到频率信号,调节变频器的输出频率,以调节电动机的转速,达到所需压力的目的。停止:按下停止按钮,PLC控制所有的接触器断开,变频器停止工作。切换:实现M1,M2,M3工频、变频相互切换。报警及故障自诊断:空压机内部一般有四个需要监测的量:冷却水压力监测、润滑油监测、机体温度监测、储气罐压力监测。4.2控制系统的工作原理启动前,将变频器的机组开关置于欲工作的机组,工作方式选择置于变频位置,将 PLC 的控制开关置于运行状态,按下启动按钮,机组运行。1# 空压机变频启动,转速从零开始上升,若达到预设的频率上限值50Hz时,延时一段时间后风包出口处的压力仍不能达到预设的压力值 (0.550.65MPa),则由PLC 通过控制中间继电器的通断将 1# 空压机切换到工频运行,同时将2#空气压缩机切换到变频状态,变频启动2#空压机。若2#空压机达到频率上限时,延时一段时间后仍不能满足要求,再自动将2#空压机切换到工频运行,变频启动3#空压机。当用风量减小,若3台空压机同时运行时,3# 空压机变频运行而此时变频器的频率降到频率的下限值20Hz时,则自动停止1#空压机,若还不能满足要求,则自动停止2# 空压机的运行。当空压机在运行的过程中出现机体温度过高,润滑油温度过高,风包温度过高,分包压力过高及润滑油压力过高,断水等故障时,系统会发出声光报警信号,提示有关的工作人员及时地排除故障。控制系统工作流程如图4-2所示。开始变频器启动频率上限是否达到频率下限是否达到监测参数是否正常是否有停机信号停机转化为工频运行并把变频器切换到下一台空压机当前空压机停机并把变频器复位报警延时YYNYYNN图4-2 控制系统流程图该系统具有手动和自动两种运行方式:(1)手动运行方式选择此方式时,按启动按钮空压机或停止按钮,可根据需要而分别启停各空压机。这种方式仅供检修或控制系统出现故障时使用。(2)自动运行方式在自动运行方式下开始启动运行时,首先打开冷却水阀,关闭供气阀,1#空压机变频交流接触器吸合,电机与变频器连通(启动过程如图4-3)变频器输出频率从0Hz开始上升,此时压力变送器检测压力信号反馈PLC,由PLC经PID运算后控制变频器的频率输出;如压力不够,则频率上升至50Hz,延时一定时间后,将1#空压机切换为工频,2#空压机变频交流接触器吸合,变频启动2#空压机,频率逐渐上升,直至供气压力达到设定压力,依次类推增加空压机。变频调速系统将管网压力作为控制对象,装在储气管出气口的压力变送器将储气罐的压力转变为电信号送给PLC内部PID调节器,与压力给定值进行比较,并根据差值的大小按既定的PID控制模式进行运算,产生控制信号去控制变频器的输出电压和逆变频率。当压力小于设定值时,频率升为50HZ,延时30s后,若测量值仍小于设定值,则变频器切换为工频运行,同时变频器启动下一台空压机,依次启动各台空压机。当压力大于设定值时,通过PID调节降低频率,当频率降为20HZ,延时30s后,若测量值仍大于设定值,则变频器切换到下一正在运行的空压机进行调速,同时关闭当前机。依次关闭各台空压机。从而使实际压力始终维持在给定压力。另外,采用该方案后,空气压缩机电动机从静止到稳定转速可由变频器实现软启动,避免了启动时的大电流和启动给空气压缩机带来的机械冲击。正常情况下,空气压缩机在变频器调速控制方式下工作。变频器一旦出现故障,煤炭生产不允许空气压缩机停机,因此,系统设置了工频与变频切换功能,这样当变频器出现故障时,可由工频电源通过接触器直接供电,使空气压缩机照常工作。整个控制过程如下:用气需求 管路气压 压力设定值与反馈值的差值 PID输出 变频器输出频率 空压机电机转速 供气流量 管路气压趋于稳定特别注意:为防止电机频繁起制动和变速,在压力容差范围内,变频器的输出频率不变。开始上电初始化冷却水压力0.2Mp润油压力 0.15Mp电气故障启动运行报警及故障处理N 图4-3启动过程空压机变频调速系统原理如图4-4所示。上位机报警装置PLC变频器1#空压机2#空压机1#空压机检测变送装置检测变送装置检测变送装置图4-4 空压机变频调速原理图空压机变频调速的要求:(1)空压机是大转动惯量负载,这种启动特点很容易引起变频器在启动时出现跳过流保护的情况,故采用具有高启动转矩的无速度矢量变频器,保证既能实现恒压供气的连续性,又可保证设备可靠稳定的运行;(2)空压机不允许长时间在低频下运行,空压机转速过低,一方面使空压机稳定性变差,另一方面也使缸体润滑度变差,会加快磨损。所以工作下限应不低于20Hz;(3)功率选用比空压机功率大一等级的变频器,以免空压机启动出现频繁跳闸的情况;(4)为了有效的滤除变频器输出电流中的高次谐波分量,减少因高次谐波引起的电磁干扰,选用输出交流电抗器,还可以减少电机运行的噪音,提高电机的稳定性;(5)设计的系统应具备变频和工频两套控制回路,确保变频出现异常跳保护时,不影响生产。4.2.1空压机切换工作过程开始时,若1#空压机变频启动,转速从0开始随频率上升,如变频器频率达到50Hz而此时空气压力还在下限值,延时一段时间(避免由于干扰而引起的误动作)后,1#空压机切换为工频运行,同时变频器频率由50Hz下降至0Hz,2#号空压机变频起动,如气压仍不满足,则会启动3#空压机,切换过程同上;同样,若3台空压机(假设1#、2#、3#)都在运行,3#空压机变频运行降到0HZ,此时气压仍处于上限值,则延时一段时间后使1#空压机停止,变频器频率从0HZ迅速上升,若此时供气压力仍处于上限值,则延时一段时间后使2#空压机机停止。这样的切换过程,有效的减少空压机的频繁启停,同时在实际管网对供气压力波动做出反应之前,由于变频器迅速调节,使气压平稳过渡,从而有效的避免了井下风动工具供气不足的情况发生。切换过程流程图如图4-5所示。开始1#空压机变频运行添加工作空压机1#空压机变频运行1#空压机停止运行减少工作空压机变频器输出频率变频器输出频率变频器输出频率上限上限延时5s延时5s延时5s上限延时5s延时5s下限下限正常图4-5 空压机切换流程图在自动状态下系统启动时,首先 KM2 吸合,1#空压机在变频器控制下起动,延时 5s(延时是为了让压力稳定下来) PLC 对变频器的输出频率进行检测。当检测到变频器下限频率信号则关闭 1#空压机;反之当检测到变频器上限频率信号则 PLC 执行增加空压机动作:KM2断开、KM1吸合,1#空压机改为工频运行并延时 1s(延时一是为了让开关充分熄弧,另一方面是为了让变频器减速为 0,KM4 吸合变频启动2#空压机。为了保护空压机及变频器,1#空压机的 KM1 与 KM2之间进行了电气互锁。当2#空压机投入变频运行后,延时 5s PLC 继续对变频器输出频率进行检测,当检测到变频器下限频率信号则关闭1#空压机,剩下2#空压机在变频状态下运行,延时 5s 如果 PLC 再次检测到变频器下限频率信号则把2#空压机也关闭;反之当检测到变频器上限频率信号则 PLC 再执行增泵动作:KM3断开、KM4 吸合,2#空压机改为工频运行并延时 1s,KM6吸合变频启动3#空压机。依此类推,当3#空压机投入变频运行后,延时 5s,PLC 继续对变频器输出频率进行检测以决定执行增加或减少空压机动作来满足恒压供气目的。另外为了方便故障检查维修。在设计中增加了故障指示和故障报警输出,变频器本身具有短路保护、过载保护等功能,只需把变频器的故障输出点、接触器、热继电器等辅助触点接到 PLC 即可。PLC通过程序扫描这些输入点,如果发生故障则作出相应的动作。如检测到一台空压机出现过载情况,则切断该空压机的接触器并投入备用空压机,同时输出故障信号,以方便检查及时维修。4.2.2通信方式(1)上位机与PLC的通信在工控领域中PLC通常作为下位机使用,工业计算机作为上位机,通过网络在线监视空压机的运行状况,查看压力、温度、运行时间、电机电压、电机电流、输出功率等实时数据,记录并存储历史数据,提供数据的查询和打印功能。当现场设备有动作或者出现故障时能够弹出提示消息并记录存储下来;在远程控制允许的情况下,值班人员还可以远程控制空压机。远程监控方便了调度,提高了管理自动化水平,是煤矿信息化发展的需要。其他元件包括手自动转换开关、紧急停止按钮、声光报警器等。在PLC和上位机之间的通讯中,PLC通过以太网模块CP343-1接入工业以太网,上位机通过网络实现远程监控功能。选择接口类型为工业Ethernet,通信速率为100Mbps,设置PLC和上位机的IP地址。在煤矿空压机组的监控系统中,用来控制空压机的PLC系统作为下位机,与调度室内的监控系统即上位机组成一个小型的工业以太网,进行PLC系统工作状态的反馈和对PLC系统发送控制信号。(2)PLC与变频器的通信本系统中PLC对变频器的控制是通过串行通讯的方式实现的,PLC通过RS-485通讯口方式与变频器通讯,控制变频器的运行,读取变频器自身的电压、电流、功率、频率、和过压、过流、过负荷等全部报警信息等参数。该过程最多分5个阶段。1、计算机发出通讯请求;2、变频器处理等待;3、变频器作出应答;4、计算机处理等待;5、计算机作出应答。根据不同的通讯要求完成相应的过程,如写变频器启停控制命令时完成13三个过程;监视变频器运行频率时完成15个过程。不论是写数据还是读数据,均有计算机发出请求,变频器只是被动接受请求并作出应答。4.2.3控制系统概述在工业控制中,PID (Proportion Integral Differential)控制是工业控制中最常用的方法。但是,它具有一定的局限性:当控制对象不同时,控制器的参数难以自动调整以适应外界环境的变化。为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用模糊控制方法。模糊控制已成为智能自动化控制研究中最为活跃而富有成果的领域。其中,模糊PID控制技术扮演了十分重要的角色,并且仍将成为未来研究与应用的重点技术之一。到目前为止,现代控制理论在许多控制应用中获得了大量成功的范例。然而在工业过程控制中,PID类型的控制技术仍然占有主导地位。虽然未来的控制技术应用领域会越来越宽广,被控对象可以是越来越复杂,相应的控制技术也会变得越来越精巧,但是以PID为原理的各种控制器将是过程控制中不可或缺的基本控制单元。利用模糊控制理论的特性,结合传统的PID控制理论,构造模糊 PID控制器,可实现控制器参数的自动调整。PID控制器系统原理框图如图4-6所示。将偏差的比例(KP )、积分(KI)和微分(KD)通过线性组合构成控制量,对被控对象进行控制,KP、KI、KD 3个参数的选取直接影响了控制效果。比例积分微分被控对象()()图4-6 控制器系统原理图在经典PID控制中,给定值与测量值进行比较,得出偏差e(t),并依据偏差情况,给出控制作用u(t)。对连续时间类型,PID控制方程的标准形式为: (4-1)式(4-1)中,u(t)为PID控制器的输出,与执行器的位置相对应;t为采样时间;KP 为控制器的比例增益;e(t)为PID控制器的偏差输入,即给定值与测量值之差;TI为控制器的积分时间常数;TD为控制器的微分时间常数。数字式PID控制器的表示函数为: (4-2)公式(4-2)中:e(n)为系统偏差;ec(n)为系统偏差变化率; KP 为比例系数;KI为积分作用系数;KD为微分作用系数。 KP 值影响系统的响应速度和精度; KP 越大,系统响应速度越快,系统的调节精度越高,如果过大,将引起超调,导致系统不稳定。KI值影响系统的稳定精度;KI越大,系统静态误差消除越快,但如果过大,在响应过程的初期会产生积分饱和的现象,从而引起响应过程的较大超调。KD值影响系统动态特性;它主要抑制响应误差的变化,如果KD过大,会使响应过分提前制动,从而延长系统调节时间。5101520253000.10.20.30.40.50.60.7t/sMPa0.8 图4-7 PID响应曲线由分析系统的响应曲线(如图4-7)可知,在函数U(n)响应的初始阶段,取较大的KP和较小的KI与KD,可以使响应曲线的斜率增大,加快其响应速度。在函数U(n)接近输出值时,迅速增大KD,并逐步减小KP,使系统获得较大的阻尼,抑制系统超调,减小响应误差的变化率。当函数U(n)达到其输出值时,应使KI增大,迅速消除系统的静态误差。根据偏差e(n)和偏差变化率ec(n)值的不同,在线适当调节参数KP、KI和KD值,可以有效提高系统的响应速度和精度,减小超调并缩短响应时间,提高系统的工作稳定性。西门子公司从S7-200系列PLC中的CPU215, CPU216开始增加了用于闭环控制的PID模块。它是通过PID调节器来调节输出,保证偏差值e为零,使系统达到稳定状态。在系统中,偏差值e是给定值SP(希望值)和过程变量PV(实际值)的差。PID控制的原理基于下面的算式: (4-3)其中: M(t): PID回路的输出,是时间的函数; Kc: PID回路的增益; e: PID回路的偏差(给定值与过程变量之差) ; Minitial:PID回路输出的初始值。 S7-300系列PLC中的CPU313提供了用于闭环控制PID运算指令,用户只需在PLC的内存中填写一张PID控制参数表(见表4-1)再执行指令:“PID Table Loop”即可完成PID运算,其中操作数Table表使用变量存储器VBx来指明控制参数表的表头字节;操作数Loop只可选择0-7的整数,表示本次PID闭环控制所针对的环路编号,最多8路。控制参数包括9个参数,全部为32位实数格式,共占用36字节。附表中的参数分两类。一类参数是固定不变的,如参数编号为2,4,5,6,7的参数,这些参数可在PLC的主程序中设定。另外一类参数必须在调用PID指令时才填入控制表格。如编号为1,3,8,9的参数,它们具有实时性。进一步分析发现:其中有一些参数,既是本次的输入(执行PID指令之前),又是本次的输出(执行PID指令之后),同时还是下次运算的输入,如编号为3,8,9的参数。表4-1中变量类型栏的In/Out应理解为相对于PID控制器而言的输入或输出。表4-1 控制参数参数编号地址偏移量(字节)变量名变量类型备注150PVnIN调节量254SPnIN给定量358MnIN/OUT控制量462KCIN比例增益566TSIN采样时间(s)670TIIN积分时间(min)774TDIN微分时间(min)878MXIN/OUT累积偏移量982PVn-1IN/OUT上一次调节量表4-1中变量名说明如下:SPn:第n采样时刻的给定值;PVn: 第n采样时刻的过程变量值;PVn-1:第n-1采样时刻的过程变量值; TS:采样时间间隔;TD:微分时间;TI:积分时间;MX:第n-1采样时刻的积分项(积分项前值)。4.2.4 报警装置系统装有压力传感器和电流传感器,结合PLC内部时间继电器,由PLC根据程序进行逻辑判断,可对电机过载、电机过流、电机起动过载、电机运行过载、空压机断水、断油、油水超温等故障报警,并执行相关保护动作。由于上述两种传感器正常工作时,均输出420mA电流信号给PLC模拟输入模块。经PLC内部A/D转换为2001000数字信号,而当传感器损坏或断线时,将不能给PLC输出信号,PLC所检测到的输入信号数字值将低于200。据此可判断传感器断线等故障。考虑到传感器精度、调整值及外界干扰等因素,PLC程序中将电流或电压信号持续1秒钟低于3mA(即PLC内部数值150)视为传感器故障。PLC程序中,当给出电机运行信号,而电机不在运行(电流信号小于2OA)。即判断为外部故障。4.3 系统设计4.3.1 PLC控制系统设计步骤设计PLC控制系统的一般步骤如图(4-8)所示。PLC控制系统设计步骤:(1) 根据生产的工艺过程分析控制要求。如需要完成的动作(动作时序、动作条件、必须的保护和联锁等)、操作方式(手动、自动、连续、单周期、单步等)。(2) 根据控制要求确定所需的用户输入、输出设备。据此确定PLC的I/O点数。(3) 选择PLC。(4) 分配PLC的I/O点,设计I/O连接图。这一步可结合第2步进行。(5) 进行PLC程序设计,同时可进行控制台的设计和现场施工。在设计继电器控制系统时,必须在控制线路(接线程序)设计完成后,才能进行控制大的设计和现场施工。可见,采用PLC控制,可以使整个工程的周期缩短。工艺过程分析控制要求确定用户I/O设备选择PLC分配I/O点,设计I/O连接图绘制流程图编制程序清单设计梯形图输入程序并检查调试满足要求修改设计控制台现场连接联机调试满足要求编织技术文件支付使用控制台设计及现场施工PLC程序设计NONONOYesYes图4-8 PLC控制系统流程图4.3.2 PLC程序设计的步骤(1) 对于较复杂的控制系统,需绘制系统控制流程图,用以清楚地表明动作的顺序和条件。对于简单控制系统,此步可省略。(2) 设计梯形图。(3)根据梯形图编制程序清单。(4) 用编程器将程序键入到PLC的用户存储器中,并检查键入的程序是否正确。(5)对程序进行调试和修改,直到满足要求为止。(6) 待控制台及现场施工完成后,就可以进行联机调试。如不满足要求,再回去修改程序或检查界限,直到满足要求为止。(7) 编制技术文件。4.4 控制系统硬件设计4.4.1主电路设计在硬件设计中,采用一台变频器控制三台空压机的电机运行,三台电机的运行都有变频/工频两种状态,每台电机都需要通过两个接触器与工频电源和变频输出电源相连。变频器输入电源前面接入一个自动空气开关,来实现电机、变频器的过流过载保护接通,空气开关的容量依据电机的额定电流来确定。还需要在工频电源下面接入同样的自动空气开关,来实现电机的过流过载保护接通。在PLC的220V输入电源前也需要接入自动空气开关,保证PLC的正常运行。所有接触器的选择都要依据电动机的容量适当选择。(主电路如图4-9)由于每台电机的工作电流都在几百安以上,为了显示电机当前的工作电流,必须在每台电机三相输入电源前面都接入一个电流互感器,电流互感器和热继电器、电流表连接。电流表安装在控制柜上,可以方便地观察电机的三相工作电流,便于操作人员监测电机的工作状态。同时热继电器可以实现对电动机的过热保护。变频器主电路电源输入端子(U1,V1,W1)经过空气开关与三相电源连接,变频器主电路输出端子(U2,V2,W2)经接触器接至三相电动机上。对于有变频/工频两种状态的电动机,一定要保证在工频电源拖动和变频输出电源拖动两种情况下电机旋向的一致性,否则在变频/工频的切换过程中会产生很大的转换电流,致使转换无法成功。在变频器起动、运行和停止操作中,必须用触摸面板的运行和停止键来操作,不得以主电路的通断来进行。上位机PLC变频器M1M3M2Km1Km2Km3Km4Km5Km6FR1FR3FR2QF1QF2QF3QF4L1L2L3图4-9 控制系统主电路图4.4.2 PLC选型 本系统中共有3台电机、3个电磁阀、7个压力传感器、12个温度传感器,启动停止等开关控制信号共19个,共有64个I/O点、它们构成了被控对象。电机的启动由开关量控制,PLC模拟量模块输出420mA电流作为变频器的控制端输入,进行压力的恒压控制。PLC输入输出模块I/O点数如表4-2所示。表4-2 PLC输入输出模块I/O点数I/O类型模拟量输入模拟量输出开关量输入开关量输出信号类型类型数量类型数量类型数量类型数量进水温度3变频器控制型号1紧急停止3工频继电器3润油温度3检修/正常3变频继电器3风包温度3故障灯复位3超温灯3电机温度3报警灯复位1断水灯3进水压力3启动按钮3电磁阀3后冷压力3停止按钮3报警灯1总管压力1自动/手动3运行灯3检修灯3油压低灯3统计点数AI19AO1DI19DO25总计64根据被控对象的I/O点数以及工艺要求、扫描速度、自诊断功能等方面的考虑,采用SIEMENS公司的S7-300系列PLC。考虑到以后的扩展要求,选用CPU313C型号PLC,S7-313C CPU包括一个主要处理单元、AI5/AO2以及DI24/DO16,这些都被集成在一个紧凑的独立的设备中,该型号具有24数字输入、16数字输出。可提供标准值为24V DC的输入和输出电压。其技术参数为:(1)指令运行时间:0.1/2/20s(二进制/定点/浮点)(2)主存储器:32KB(3)SIMATIC Micro存储卡:64KB4M(4)本机分布式I/O:DI/DO:24/16 A1/AO*PT100:4+1/2(5)技术功能: 计数频率测量:3 ( 30KHz ) 4 ( 2.5KHz )(6)接口:MPI 187.5Kbps(7)外形尺寸:1201251304.4.3变频器选型本设计变频器选择西门子MM440变频器。它采用高性能的矢量控制技术,提供低速高转矩输出和良好的动态特性,同时具备超强的过载能力,以满足广泛的应用场合。创新的BiCo(内部功能互联)功能有无可比拟的灵活性。 (1)主要特征 200V-240V 10%,单相/三相,交流,0.12kW-45kW; 380V-480V10%,三相,交流,0.37kW-250kW; 矢量控制方式,可构成闭环矢量控制,闭环转矩控制; 高过载能力,内置制动单元; 三组参数切换功能。控制功能: 线性v/f控制,平方v/f控制,可编程多点设定v/f控制,磁通电流控制免测速矢量控制,闭环矢量控制,闭环转矩控制,节能控制模式; 标准参数结构,标准调试软件; 数字量输入6个,模拟量输入2个,模拟量输出2个,继电器输出3个;独立I/O端子板,方便维护;采用BiCo技术,实现I/O端口自由连接;内置PID控制器,参数自整定;集成RS485通讯接口,可选PROFIBUS-DP/Device-Net通讯模块; 具有15个固定频率,4个跳转频率,可编程;可实现主/从控制及力矩控制方式;在电源消失或故障时具有自动再起动功能;灵活的斜坡函数发生器,带有起始段和结束段的平滑特性;快速电流限制(FCL),防止运行中不应有的跳闸; 有直流制动和复合制动方式提高制动性能。 (2)保护功能 过载能力为200额定负载电流,持续时间3秒和150额定负载电流,持续时间60秒;过电压、欠电压保护;变频器、电机过热保护;接地故障保护,短路保护;闭锁电机保护,防止失速保护;采用PIN编号实现参数连锁。4.4.4传感器的选取传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。作为一个参数监测系统,传感器占有非常重要的地位。下面对本系统中所涉及的传感器作简要比较并最终选型。(1)压力传感器的选型现场所需要测量的压力参数有主机进水压力、储气罐气体压力。压力信号要求范围为01MPa,精度为0.5%以上。目前市场上的压力传感器种类繁多,在选型时应根据不同的使用条件选择不同的传感器。本系统采用北京科热测控技术有限责任公司研制的GPT压力变送器。GPT压力变送器压力测量特性如下:传感器为316不锈钢膜片结构,适用被测介质可以是腐蚀性气体、液体、蒸汽,测量范围在20KPa20MPa,测量精度分为0.1%,0.25%,0.5%,三倍过压范围。信号输出特性:电流型输出:DC/420mA,最大负载电阻测算(含传输线内阻):Rmax= ( V -12 ) /0.02(其中V为供电电压)。供电特性:推荐工作供电电压:DC/24V,空载工作电压:DC/12V,最高过载电压:DC/40V,最大输出限流:30mA,内设电压极性反接保护。工作环境特性:环境温度补偿范围:050,环境温度工作范围:-2080。工作环境湿度范围:080外型结构与典型接线:探头外型尺寸:59mm120mm,重量:650g; GPT过程连接外螺纹规格M201.5(或定制);DPT过程连接内螺纹规格M121.25。(2)温度传感器的选型现场的温度信号范围为0160,所以温度传感器采用PT100标准电阻温度传感器。PT100是铂电阻温度传感器,它适用于测量-60到+400之间
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!