精校版贵州省贵阳市九年级数学竞赛讲座 03第三讲 充满活力的韦达定理

上传人:痛*** 文档编号:76744195 上传时间:2022-04-18 格式:DOC 页数:6 大小:679KB
返回 下载 相关 举报
精校版贵州省贵阳市九年级数学竞赛讲座 03第三讲 充满活力的韦达定理_第1页
第1页 / 共6页
精校版贵州省贵阳市九年级数学竞赛讲座 03第三讲 充满活力的韦达定理_第2页
第2页 / 共6页
精校版贵州省贵阳市九年级数学竞赛讲座 03第三讲 充满活力的韦达定理_第3页
第3页 / 共6页
点击查看更多>>
资源描述
最新资料最新资料最新资料最新资料最新资料 一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的 韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法【例题求解】【例1】 已知、是方程的两个实数根,则代数式的值为 思路点拨 所求代数式为、的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果、都是质数,且,那么的值为( ) A B或2 C D或2 思路点拨 可将两个等式相减,得到、的关系,由于两个等式结构相同,可视、为方程的两实根,这样就为根与系数关系的应用创造了条件注:应用韦达定理的代数式的值,一般是关于、的对称式,这类问题可通过变形用+、表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式【例3】 已知关于的方程: (1)求证:无论m取什么实数值,这个方程总有两个相异实根 (2)若这个方程的两个实根、满足,求m的值及相应的、 思路点拨 对于(2),先判定、的符号特征,并从分类讨论入手【例4】 设、是方程的两个实数根,当m为何值时,有最小值?并求出这个最小值 思路点拨 利用根与系数关系把待求式用m的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(0)进行的注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性【例5】 已知:四边形ABCD中,ABCD,且AB、CD的长是关于的方程的两个根(1)当m2和m2时,四边形ABCD分别是哪种四边形?并说明理由(2)若M、N分别是AD、BC的中点,线段MN分别交AC、BD于点P,Q,PQ1,且ABBC)的长是关于的方程的两个根(1)求rn的值;(2)若E是AB上的一点,CFDE于F,求BE为何值时,CEF的面积是CED的面积的,请说明理由 16设m是不小于的实数,使得关于的方程工有两个不相等的实数根、(1) 若,求m的值(2) 求的最大值 17如图,已知在ABC中,ACB=90,过C作CDAB于D,且ADm,BD=n,AC2:BC22:1;又关于x的方程两实数根的差的平方小于192,求整数m、n的值18设、为三个不同的实数,使得方程和和有一个相同的实数根,并且使方程和也有一个相同的实数根,试求的值 参考答案 最新精品资料
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!