资源描述
三、数形结合思想考情分析高频考点-2-2-2-2-高考命题聚焦思想方法诠释数形结合思想是解答高考数学试题的一种常用方法与技巧,在高考试题中,数形结合思想主要用于解选择题和填空题,有直观、简单、快捷等特点;而在解答题中,考虑到推理论证的严密性,图形只是辅助手段,最终还是要用“数”写出完整的解答过程.考情分析高频考点-3-3-3-3-高考命题聚焦思想方法诠释1.数形结合思想的含义数形结合思想就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.它包含两个方面:(1)“以形助数”,把抽象问题具体化,这主要是指用几何的方法去解决代数或三角问题;(2)“以数解形”,把直观图形数量化,使形更加精确,这主要是指用代数或三角的方法去解决几何问题.考情分析高频考点-4-4-4-4-高考命题聚焦思想方法诠释2.数形结合思想在解题中的应用(1)构建函数模型并结合其图象求参数的取值范围、研究方程根的范围、研究量与量之间的大小关系.(2)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式.(3)构建立体几何模型研究代数问题.(4)构建解析几何中的斜率、截距、距离等模型研究最值问题.(5)构建方程模型,求根的个数.考情分析高频考点-5-5-5-5-命题热点一命题热点二命题热点三命题热点四利用数形结合求函数零点的个数【思考】 如何利用函数图象解决函数零点的个数问题?例1若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x)2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.6 答案解析解析关闭 答案解析关闭考情分析高频考点-6-6-6-6-命题热点一命题热点二命题热点三命题热点四题后反思因为方程f(x)=0的根就是函数f(x)的零点,方程f(x)=g(x)的根就是函数f(x)和g(x)的图象的交点的横坐标,所以用数形结合的思想讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数,其基本步骤是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.考情分析高频考点-7-7-7-7-命题热点一命题热点二命题热点三命题热点四对点训练1函数f(x)=4cos2 -2sin x-|ln(x+1)|的零点个数为. 答案解析解析关闭 答案解析关闭考情分析高频考点-8-8-8-8-命题热点一命题热点二命题热点三命题热点四利用数形结合求参数范围及解不等式【思考】 如何利用函数图象解决不等式问题?函数的哪些性质与函数图象的哪些特征联系密切?例2已知函数 若存在k使得函数f(x)的值域是0,2,则实数a的取值范围是() 答案解析解析关闭 答案解析关闭考情分析高频考点-9-9-9-9-命题热点一命题热点二命题热点三命题热点四题后反思在解含有参数的不等式时,由于涉及参数,因此往往需要讨论,导致演算过程烦琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会简练地得到解决.(1)解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个(或多个)函数图象的上、下位置关系转化数量关系来解决不等式的解的问题,往往可以避免烦琐的运算,获得简捷的解答.(2)函数的单调性经常联系函数图象的升、降;奇偶性经常联系函数图象的对称性;最值(值域)经常联系函数图象的最高点、最低点的纵坐标.考情分析高频考点-10-10-10-10-命题热点一命题热点二命题热点三命题热点四对点训练2若不等式|x-2a| x+a-1对xR恒成立,则a的取值范围是. 答案解析解析关闭 答案解析关闭考情分析高频考点-11-11-11-11-命题热点一命题热点二命题热点三命题热点四 答案解析解析关闭 答案解析关闭考情分析高频考点-12-12-12-12-命题热点一命题热点二命题热点三命题热点四题后反思首先画出满足条件的图形区域,然后根据目标函数的特点(或所求量的几何意义),转化为距离或直线的斜率、截距等.考情分析高频考点-13-13-13-13-命题热点一命题热点二命题热点三命题热点四对点训练3已知实数x,y满足 z=|2x-2y-1|,则z的取值范围是. 答案解析解析关闭 答案解析关闭考情分析高频考点-14-14-14-14-命题热点一命题热点二命题热点三命题热点四数形结合在解析几何中的应用【思考】 数形结合思想在解析几何中有哪些方面的应用?例4已知函数y=f(x)(x(-,-2)(2,+),在其图象上任取一点P(x,y)都满足方程x2-4y2=4.函数y=f(x)一定具有奇偶性;函数y=f(x)在(-,-2)内是单调函数;x0(-,-2)(2,+),使x02f(x).以上说法正确的是.(填序号) 答案解析解析关闭 答案解析关闭考情分析高频考点-15-15-15-15-命题热点一命题热点二命题热点三命题热点四题后反思1.如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有:2.在解析几何中的一些范围及最值问题中,常根据图形的性质结合几何概念进行相互转换,使问题得到简便快捷的解决.考情分析高频考点-16-16-16-16-命题热点一命题热点二命题热点三命题热点四对点训练4已知双曲线 (a0,b0)的右焦点为F,若过点F且倾斜角为60的直线与双曲线的右支有且只有一个交点,求此双曲线离心率的取值范围. 答案 答案关闭核心归纳-17-规律总结拓展演练1.实现数形结合的渠道主要有:(1)实数与数轴上点的对应;(2)函数与图象的对应;(3)曲线与方程的对应;(4)以几何元素及几何条件为背景,通过坐标系来实现的对应,如复数、三角、空间点的坐标等.2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解.核心归纳-18-规律总结拓展演练3.在运用数形结合思想分析问题和解决问题时,需做到以下四点:(1)要彻底明白一些概念和运算的几何意义以及曲线的代数特征;(2)要恰当设参数,合理用参数,建立关系,做好转化;(3)要正确确定参数的取值范围,以防重复和遗漏;(4)精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解.4.很多数学概念都具有明显的几何意义,善于利用这些几何意义,往往能达到事半功倍的效果.核心归纳-19-规律总结拓展演练1.已知0a1,则方程 =|logax|的实根个数为()A.1B.2C.3D.4 答案解析解析关闭 答案解析关闭核心归纳-20-规律总结拓展演练2.一个游泳池长100 m,甲、乙两人分别在游泳池相对两边同时朝对面游泳,甲的速度是2 m/s,乙的速度是1 m/s,若不计转向时间,则从开始起到5 min止,它们相遇的次数为()A.6B.5C.4D.3 答案解析解析关闭 答案解析关闭核心归纳-21-规律总结拓展演练3. 设p:实数x,y满足(x-1)2+(y-1)22,q:实数x,y满足 则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件 答案解析解析关闭 答案解析关闭核心归纳-22-规律总结拓展演练A解析 e为单位向量,b2-4eb+3=0,b2-4eb+4e2=1.(b-2e)2=1.以e的方向为x轴正方向,建立平面直角坐标系,如图.核心归纳-23-规律总结拓展演练核心归纳-24-规律总结拓展演练 答案解析解析关闭 答案解析关闭核心归纳-25-规律总结拓展演练6.已知奇函数f(x)的定义域是x|x0,xR,且在区间(0,+)内单调递增,若f(1)=0,则满足xf(x)0的x的取值范围是. 答案解析解析关闭 答案解析关闭
展开阅读全文