山东省淄博市淄川般阳中学高中数学 3.3二元一次不等式组与平面区域课件 新人教A版必修5

上传人:沈*** 文档编号:68740546 上传时间:2022-04-04 格式:PPT 页数:26 大小:3.03MB
返回 下载 相关 举报
山东省淄博市淄川般阳中学高中数学 3.3二元一次不等式组与平面区域课件 新人教A版必修5_第1页
第1页 / 共26页
山东省淄博市淄川般阳中学高中数学 3.3二元一次不等式组与平面区域课件 新人教A版必修5_第2页
第2页 / 共26页
山东省淄博市淄川般阳中学高中数学 3.3二元一次不等式组与平面区域课件 新人教A版必修5_第3页
第3页 / 共26页
点击查看更多>>
资源描述
二元一次不等式(组)与平面区域人教人教A A版必修版必修5 5 3.3.13.3.1问题问题在平面直角坐标系中,直线在平面直角坐标系中,直线x+y-1=0 x+y-1=0将平面分成几部分呢?将平面分成几部分呢?不等式不等式x+y-1x+y-10 0对应平面内哪部分的点呢?对应平面内哪部分的点呢?0 xy11x+y-1=0想一想?想一想?【学情调查学情调查 情境导入情境导入】右上方点右上方点左下方点左下方点区域内的点区域内的点x+y-1x+y-1值值的正负的正负代入点的坐标代入点的坐标(1,1)(2,0)(0,0)(2,1)(-1,1)(-1,0)(-1,-1)(2,2)直线上的点的坐标满足直线上的点的坐标满足x+y-1=0 x+y-1=0,那么直,那么直线两侧的点的坐标代入线两侧的点的坐标代入x+y-1x+y-1中,也等于中,也等于0 0吗吗? ?先完成下表,再观察有何规律呢?先完成下表,再观察有何规律呢?问题展示问题展示 合作探究合作探究0 xy11x+y-1=0同侧同号,异侧异号同侧同号,异侧异号正正负负1 1、点集、点集(x,y)|x+y-10(x,y)|x+y-10 表示直线表示直线x x + +y y1=01=0 右上方右上方的平面区域;的平面区域;2 2、点集、点集(x,y)|x+y-10(x,y)|x+y-14x+4y4x-y-40 x-y-40 x-y-40 x-y-40典例精析典例精析题型一:画二元一次不等式表示的区域题型一:画二元一次不等式表示的区域例例1 1、画出、画出 x+4y4 x+4y4 表示的平面区域表示的平面区域x+4y=4x+4y=4x+4y4x+4y4x +4y4(2 2)x-y-40 x-y-40 x-y-40o ox xy yx-y-4=0 x-y-4=0例例2 2、画出不等式组表示的平面区域。、画出不等式组表示的平面区域。 题型二:画二元一次不等式组表示的区域题型二:画二元一次不等式组表示的区域由于所求平面区域的点的坐由于所求平面区域的点的坐标需同时满足两个不等式,标需同时满足两个不等式,因此二元一次不等式组表示因此二元一次不等式组表示的区域是各个不等式表示的的区域是各个不等式表示的区域的区域的交集交集,即,即公共部分公共部分。分析分析:画二元一次不等式组表画二元一次不等式组表示的平面区域的步骤:示的平面区域的步骤:2.2.点定域点定域3.3.交定区交定区1.1.线定界线定界x-y+5x-y+50 0 x+yx+y0 0 x x3 3x xo oy y4 4- -5 55 5x-y+5=0 x-y+5=0 x+y=0 x+y=0 x=3 x=3 变式练习变式练习如图,表示满足不等式(X -Y )(X +2Y -2)0的点(X ,Y )所在区域应为:( )By12O(C)y12O(D)y12O(A)y12O(B)(0,1)(-4,-1)(2,-1)xy题型三:根据平面区域写出二元一次不等式(组)题型三:根据平面区域写出二元一次不等式(组)例例3、写出表示下面区域、写出表示下面区域的二元一次不等式组的二元一次不等式组解析:边界直线方程为解析:边界直线方程为 x+y-1=0 x+y-1=0 代入原点(代入原点(0 0,0)0) 得得0+0-10+0-10 0 即所求不等式为即所求不等式为 x+y-10 x+y-10典例精析典例精析题型三:根据平面区域写出二元一次不等式(组)题型三:根据平面区域写出二元一次不等式(组)例例3 3、写出表示下面区域的二元一次不等式、写出表示下面区域的二元一次不等式x xy y-2-2o o1 11 1-1-1x-2y+2x-2y+20 0y-1y-1绿色区域绿色区域蓝色区域蓝色区域x-2y+2x-2y+20 0y-1y-1x+y-10 x+y-10 x+y-10 x+y-10紫色区域紫色区域黄色区域黄色区域根据平面区域写出二元一次根据平面区域写出二元一次不等式(组)的不等式(组)的步骤:步骤:达标训练巩固提升达标训练巩固提升求边界直线的方程求边界直线的方程代入区域内的点定号代入区域内的点定号写出不等式(组)写出不等式(组)题型五:综合应用题型五:综合应用解析:解析: 由于在异侧,则(由于在异侧,则(1 1,2 2)和()和(1 1,1 1)代入代入3x-y+m 3x-y+m 所得数值所得数值异号异号,则有(则有(3-2+m3-2+m)()(3-1+m3-1+m) 0 0所以(所以(m+1m+1)(m+2) 0(m+2) 0即:即:-2m-1-2m-1试确定试确定m m的范围,使点(的范围,使点(1 1,2 2)和)和(1 1,1 1)在)在3x-y+m=03x-y+m=0的的异侧异侧。例例4 4、变式变式: :若在若在同侧同侧,m m的范围又是什么呢?的范围又是什么呢?解析解析:由于在同侧,则(由于在同侧,则(1 1,2 2)和()和(1 1,1 1)代入代入3x-y+m 3x-y+m 所得数值所得数值同号同号,则有(则有(3-2+m3-2+m)()(3-1+m3-1+m) 0 0所以(所以(m+1m+1)(m+2)(m+2) 0 0即:即:m -2m -2或或m m-1-1题型四:综合应用题型四:综合应用求二元一次不等式组求二元一次不等式组所表示的平面区域的面积所表示的平面区域的面积例例5 5、 x-y+50 y2 0 x22 2x xo oy y-5-55 5D DC CB BA Ax-y+5=0 x-y+5=0 x=2x=2y=2y=22 2如图,平面区域为直角梯形如图,平面区域为直角梯形, ,易得易得A(0,2),B(2,2),C(2,7),D(0,5)A(0,2),B(2,2),C(2,7),D(0,5)所以所以AD=3,AB=2,BC=5AD=3,AB=2,BC=5故所求区域的面积为故所求区域的面积为S=S=解析:解析:825321题型四:综合应用题型四:综合应用若二元一次不等式组若二元一次不等式组所表示的平面区域是一个三角形,所表示的平面区域是一个三角形,求求a a的取值范围的取值范围变式:变式: x-y+50 ya 0 x2变式训练变式训练题型四:综合应用题型四:综合应用若二元一次不等式组若二元一次不等式组所表示的平面区域是一个三角形,所表示的平面区域是一个三角形,求求a a的取值范围的取值范围变式:变式: x-y+50 ya 0 x22 2x xo oy y5 5D DC Cx-y+5=0 x-y+5=0 x=2x=2-5-5y=y=ay=y=ay=y=ay=y=5y=y=77 7数形结合思想数形结合思想答案答案:5a5a 7 7 某工厂用某工厂用A A、B B两种配件生产甲、乙两种产品两种配件生产甲、乙两种产品, ,每生产一件每生产一件甲产品使用甲产品使用4 4个个A A配件耗时配件耗时1h, 1h, 每生产一件乙产品使用每生产一件乙产品使用4 4个个B B配配件耗时件耗时2h,2h,该厂每天最多可从配件厂获得该厂每天最多可从配件厂获得1616个个A A配件和配件和1212个个B B配配件件, ,按每天工作按每天工作8 8小时计算小时计算, ,该厂所有可能的日生产安排是什么该厂所有可能的日生产安排是什么? ?把有关数据列表表示如下把有关数据列表表示如下: :821所需时间所需时间1240B种配件种配件1604A种配件种配件资源限额资源限额 乙产品乙产品 (1件件)甲产品甲产品 (1件件)资资 源源消消 耗耗 量量产品产品设甲、乙两种产品分别生产设甲、乙两种产品分别生产x x、y y件件. .oxy246824280 xy4x 3y 28,416,412,0,0.xyxyxy 设甲、乙两种产品分别生产设甲、乙两种产品分别生产x x、y y件件, ,由己知由己知条件可得二元一次不等式组:条件可得二元一次不等式组:oxy24682428,416,412,0,0.xyxyxy 设甲、乙两种产品分别生产设甲、乙两种产品分别生产x x、y y件件, ,由己知由己知条件可得二元一次不等式组:条件可得二元一次不等式组:280 xy4x 3y oxy246824280 xy4x 3y 若生产一件甲产品获利若生产一件甲产品获利2 2万元万元, ,生产一件乙产品生产一件乙产品获利获利3 3万元万元, ,采用哪种生产安排利润最大采用哪种生产安排利润最大? ? 设生产甲产品设生产甲产品 件,乙产品件,乙产品 件时,工厂获得件时,工厂获得的利润为的利润为 ,则,则 .xyz23zxy230 xy MABN线性约线性约束条件束条件线性目线性目标函数标函数28,416,412,0,0.xyxyxy 23zxy 在线性约束条件下求线性目标函数的最大值或最小值问题在线性约束条件下求线性目标函数的最大值或最小值问题, ,统称为统称为线性规划问题线性规划问题. . 不等组(不等组(1 1)是一组对变量)是一组对变量 的约束条件,这组约束条的约束条件,这组约束条件都是关于件都是关于 的一次不等式,的一次不等式,所以又称为所以又称为线性约束条件线性约束条件. .、x y、x y 函数函数 称为目标函称为目标函数数, ,又因这里的又因这里的 是是关于变量关于变量 的一次解析式的一次解析式, ,所以又称为所以又称为线性目标函数线性目标函数. .23zxy 23zxy 、x y可行域可行域可行解可行解最优解最优解oxy246824280 xy4x 3y 230 xy M 由所有可行解组由所有可行解组成的集合叫做成的集合叫做可行域可行域. . 使目标函数取得使目标函数取得最大值或最小值的可最大值或最小值的可行解叫做线性规划问行解叫做线性规划问题的题的最优解最优解. . 满足线性约束条满足线性约束条件的解件的解 叫做叫做可行解可行解. .( ,)x y280 xy4x 3y Moxy246824N28 ,41 6 ,41 2 ,0 ,0 .xyxyxy 在线性约束条件在线性约束条件 下,下,求(求(1 1)目标函数)目标函数 的最大值;的最大值; (2 2)目标函数)目标函数 的最大值和最小值的最大值和最小值. .2zxy zxy 20 xy 0 xy AB 求求z=2x-yz=2x-y最大值与最小值最大值与最小值 。设设x,y满足约束条件:满足约束条件:作可行域(如图)因此z在A(2,-1)处取得最大值,即Zmax=22+1=5;在B(-1,-1)处取得最小值,即Zmin=2(-1)-(-1)=-1。由z=2x-y得y=2x-z,因此平行移动直线y=2x,若直线截距-z取得最大值,则z取得最小值;截距-z取得最小值,则z取得最大值.综上,z最大值为5;z最小值为-1.举一反三举一反三x-y0 x+y-1 0y -1解:y=-1x-y=0 x+y=1(-1,-1)xy011ABC(2,-1)y=2x 求求z=-x-yz=-x-y最大值与最小值最大值与最小值 。设设x,y满足约束条件:满足约束条件:作可行域(如图)因此z在B(-1,-1)处截距-z取得最小值,z取得最大值即Zmax=2;在边界AC处取得截距-z最大值,z取得最小值即Zmin=-2-(-1)=-1。由z=-x-y得y=-x-z,因此平行移动直线y=-x,若直线截距-z取得最大值,则z取得最小值;截距-z取得最小值,则z取得最大值.变式演练变式演练x-y0 x+y-1 0y -1解:y=-1x-y=0 x+y=1(-1,-1)xy011ABC(2,-1)y=-x69Px-2y7043120230u=z1t3xyxyyx22学案典型例题 例1已知x,y满足现行约束条件求(1)4x-3y的最大值与最小值。(2) =(x+3) +(y+1)的最大值和最小值。(3) =的最值。P(-3,-1)4x-3y-12=0 x+2y-3=0X-2y+7=04x-3y-12=0 x+2y-3=0X-2y+7=0P(-3,-1)x+2y-3=0X-2y+7=04x-3y-12=0P(-3,-1)Q(x,y)13ytxminPBtkmaxPAtk
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!